lstm结构图_LSTM 如何解决RNN中梯度消失问题

一.RNN每一层的网络的结构

bc5889e33689a4a81d80f057bcad9097.png
  • 由上图看出,对RNN来讲,每一层网络的输入来自前一层的输出h和当前层的的输入x,当前层会得到该层的输出h_hat 和 经过softmax后的y值输出,这里3个W参数可训练。
  • 每一层的隐向量为
    , 每一层的输出
  • 在反向传播过程中,总误差
    关于
    的梯度计算如下,需要注意的是
    代表每个t时间步神经元输出的误差总和
  • 因此当反向传播K个时间步时
  • ,
    这里的推导看不懂
  • 如果
    主特征值大于1,梯度爆炸,小于1梯度消失。
  • 详细细节请参考:Cyber:为什么LSTM可以阻止梯度消失:从反向传播视角来考虑(博客翻译)

二.LSTM的网络结构

280874a76b3c8b805dafd840b0738bdd.png

7091259d14597bcfa5d6b451e71eb35c.png

从RNN推导可知,造成梯度问题的求导在于

,也就是说如果这个导数是良性的,我们就可以学到长期依赖。

73c33e46894255831b6063509be9db42.png
  • LSTM的推导不仅只有上面部分,这里只解释
    对于梯度问题的改进
  • 当我们需要k时间步的反向传播,这里需要将上述式子进行连乘k次,在
    都是可以学习的,也就是门函数赋予网络决定梯度消失程度的能力,即梯度求导中包含加法,使得模型可以自我学习加法,使得导数可以在1上下跳动
  • 当长期依赖对结果有重要影响时,网络可以将遗忘门学习的很大即将
    学习的较大,如果长期依赖对结果不重要,梯度消失对结果影响不大,则遗忘门学习的就小一点。
  • 解释上句话为什么
    调大可以保留更多的上文信息

75d3b9def7d8cab04889ed4cabbcc8ed.png

公式得到其值在[0,1]之间,因为
是一个连乘公式,所以未保证连乘中的每一项都接近1,
接近1.

参考:

为什么相比于RNN,LSTM在梯度消失上表现更好?

图解LSTM结构_光英的记忆博客-CSDN博客_lstm结构图

Cyber:为什么LSTM可以阻止梯度消失:从反向传播视角来考虑(博客翻译)

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值