自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

一千零一夜的博客

以此博客,见证我的终身学习

  • 博客(496)
  • 资源 (3)
  • 收藏
  • 关注

原创 人脸关键点数据集WFLW

关键点数据集介绍

2024-09-13 18:34:30 433

原创 Deep Learning-Based Object Pose Estimation:A Comprehensive Survey

基于深度学习的目标姿态估计:一份综合的调研

2024-09-12 10:36:05 826

原创 只使用qt求多边形点集的外接矩形

qt求外接矩形

2024-09-09 12:11:21 354

原创 qtdraw-使用qt绘图之开源源码学习

qt绘图功能

2024-09-07 12:00:21 597

原创 qt QGraphicsScene场景坐标和场景内GraphicsItem局部坐标的相互转换

场景坐标和转场景内某个item局部坐标之间的相互转换。

2024-09-07 10:05:57 383

原创 调研适合c++训练和部署的框架

框架选择

2024-08-13 15:33:42 614

原创 华为升腾显卡选型备忘

官方硬件分类:(1)V后缀的都是Video视频解析卡;(2)I后缀的都是推理卡;(3)芯片是310则是推理卡,910是训练卡。

2024-06-25 14:57:02 2677

原创 visual studio打包qt算子时,只生成dll没有生成lib等文件

解决不生成lib文件问题。

2024-06-03 15:55:42 452

原创 缺陷检测-Mixed supervision for surface-defect detection:from weakly to fully supervised learning

缺点:(1)分割模块只有下采样,没有上采样,最后的分割精度会下降。(2)且没有跳层连接(类似resnet或者unet结构),浅层信息会丢失,不利于多尺度缺陷检测。

2024-02-18 16:42:18 701

原创 实现pytorch版的mobileNetV1

这里是根据网络结构,搭建模型,用于图像分类任务。

2024-01-06 18:33:09 867

原创 轻量化网络-MobileNet系列

(2)不同的是组件不再是一种深度可分离卷积,而是水桶型结构:先1x1卷积通道升维,再深度卷积,再接1x1卷积(也就是逐点卷积)降维,这里与Resnet刚好相反(所以叫。深度可分类卷积:将普通卷积(核大小5x5x3)拆分成深度卷积(核大小5x5x1),逐点卷积(核大小1x1x3),过程如下图。(2)逐点卷积(就是1x1的卷积),逐个点去卷积,一个卷积(核大小1x1x3)去卷8x8x3,得到8x8x1特征图。(1)深度卷积,逐个通道去卷积,一个卷积(核大小5x5x1)去卷12x12x3,得到8x8x3特征图。

2024-01-04 17:20:18 1518

原创 qt 异常汇总

汇总记录,备忘

2024-01-03 18:27:53 905

原创 c++ 简单实用万能异常捕获

多层捕获异常,逐渐严格。并打印出错信息和位置:哪个文件,哪个函数,具体哪一行代码。

2023-12-29 10:25:25 833

原创 vs真香插件汇总

慢慢汇总各种好用的vs插件.

2023-12-27 11:47:07 877

原创 qt .pro工程转vs工程

(2)扩展 -》Qt VS Tools -》Open Qt Project (.pro) 打开对应的pro文件即可将.pro工程转成vs工程;:转成的vs工程在pro文件同级目录下,双击打开vcxproj文件即可在vs中看到vs项目。(1)新建vs空项目;

2023-12-27 10:34:02 882

原创 qt项目-《图像标注软件》源码阅读笔记-CentralWidget类及其子类

功能:CentralWidget 负责主窗口中心组件的界面初始化以及后续中心组件的管理。其两个派生类分别负责2D、3D中心组件,2d和3d的模式可以进行切换。新建command, sarea, label三个对象;

2023-12-25 16:38:03 438

原创 qt项目-《图像标注软件》源码阅读笔记-Label 2d绘制图片及标注类

color默认标注形状颜色, pixmap中心图片, magnifierArea右下角放大区域图片;标注时,选择不同的shape,生成不同的shape对象并更新其成员。内部具体的形状的绘制均交由Shape类进行处理,2d绘制图片及标注类,继承QLabel。具体的绘制则会调用对应形状类的虚函数。在处理放大图像问题。是否在shape内部。Shape类为形状基类,shape内部拖动。

2023-12-25 15:00:51 429 3

原创 qt项目-《图像标注软件》源码阅读笔记-Command类绘图及其子类

字段(多了一个manager):存放中心组件指针CentralWInit2D* manager(中心窗口);其子类Command2D和Command3D都是实现父类方法,除了构造函数没有自己的独有方法。功能:命令栈基类,用来实现撤销和重做功能。继承自Command类。

2023-12-23 18:31:29 178

原创 qt项目-《图像标注软件》源码阅读笔记-Shape类绘图及其子类

嵌套类型有很多种,包括内部类、嵌套结构、嵌套枚举等。嵌套类型提供了一种将相关的类型组织在一起并隐藏其实现细节的方式。这里使用的是枚举类型的嵌套。功能:Shape类及其子类负责形状的绘制及形状的存储。Shape有7个子类。Rectangle: 默认构造函数,在头文件做好了实现,用于构造自己和父类。points: 存储标注形状的像素点位。的形式是为了引入命名空间。其他子类类似,就不细究了。

2023-12-23 15:03:36 348

原创 qt项目-《图像标注软件》源码阅读笔记-类图

负责形状的绘制及形状的存储。

2023-12-23 10:36:25 341

原创 使用vs2019自动生成类图(纯c++项目或者qt项目)

删除自动生成的main.cpp,然后点击项目,添加文件,导入所有的qt源文件即可。然后生成类图和纯c++一样。原因是直接右击项目,然后查看类视图时,整个项目包含了多个命名空间,源码不在同一个命名空间内,如下。如果是查看已存在的Qt项目,则需要新建一个Qt Console Application。解决办法,分别右击每一个命名空间,查看类视图。上面的生成的类试图如下。视图 -》类视图。右击其中一个类,查看类图。(1)值不在预期范围内。

2023-12-22 18:35:40 3520

原创 qt 信号和槽的简明使用

自定义信号,写在signals下。返回值是void,只需要声明,不需要实现可以有参数,所以可以重载slots. 早期qt必须写在public slots下.返回值void,需要声明和实现可以有参数,所以可以重载举个例子:下课了,触发老师发送饿了的信号,学生接受信号并进行请客吃饭事件。程序:调用classIsOver(),触发老师hungry(), 学生接受信号并treat();Teacher类Q_OBJECTpublic:signals:// 信号{}Student类。

2023-12-21 19:57:21 317

原创 Qt 中文QString和std::string互转等中文格式问题

【代码】Qt 中文QString和std::string互转等中文格式问题。

2023-12-20 15:01:47 534

原创 qt 常用快捷键

【代码】qt 常用快捷键。

2023-12-20 09:15:20 101

原创 qt creator配置opencv库 (MSVC版本)

pro文件添加opencv。

2023-12-07 17:40:30 1105

原创 pyclipper和ClipperLib操作多边型

(3) 添加现有clipper头文件和源码 clipper.cpp和clipper.hpp。参数MiterLimit=10是尖角(左图),默认值是2,圆角(右图)(2)vs2019配置clipper环境,只需要添加包含目录即可。MiterLimit默认2圆角(左图),10尖角 (右图)(1)这里使用旧版clipper,下载后解压。

2023-11-16 11:10:54 1059

原创 PaDiM 无监督异常检测和定位-论文和源码阅读

思路:数据特征的分布被假定为一个多元高斯分布,异常值通常在多元高斯分布中表现为远离数据集的中心(均值向量)的数据点。协方差矩阵可以描述各个特征之间的相关性和离散程度。通过计算数据点相对于协方差矩阵的马氏距离,可以识别潜在的异常点。

2023-11-02 11:34:29 775

原创 efficientAD 源码阅读

(1)teacher和student网络结构是一样的,只是teacher的最后一个卷积输出通道翻倍。(1)image_ae和image_st是同样的图片,只不过image_ae多了一个颜色数据增强;(1)image_ae和image_st是同样的图片,只不过image_ae多了一个颜色数据增强;(2)student不是在预训练数据集上进行训练,而是在具体的应用项目中无异常图像上训练。(1)teacher是图像分类数据集的预训练模型,或者是这种预训练网络的蒸馏版本;(2)注意:没有bn操作。

2023-10-25 21:13:41 1075 1

原创 pointnet和pointnet++点云分割和分类

(2)论文中n是1024(均匀采样),论文中只用到了(x,y,z)坐标,所以输入是nx3点云矩阵,首先经过mlp(64,64),即两个多层感知机全连接网络,维度变化3->64->64,输出nx64特征向量;(2)网络输入的是Nx(d+C)矩阵,N是点个数,d维坐标,C维点特征,输出矩阵是N'x(d+C'),其中N'是采样后的点个数,C'是点特征向量维度。(3)分割输出:分割分支输出的是nxm的矩阵scores,有n个点,每个点有m个分数,m个分数对应m个语义分割类别,哪个值大,当前点就属于哪个类别。

2023-10-17 09:25:05 2359

原创 《3D 数学基础》几何检测-相交性检测

以c_m为原点,d为移动的方向向量,t为自变量的射线p(t) = c_m + td。因为移动是相对的,所以可以将左边的球设置为静止的,右边的移动方向就变成d,如下。如果两个都在运动,则换成一个静止,一个做相对运动(如上面的两个圆或者球是否相交)两个球在分别移动d1和d2的过程中是否会相交的,如下,d1和d2是移动向量。静止相交性检测是简单的,需要在每个维度上单独检测他们的相交性即可。其实是求t,知道相交点的t值,利用射线公式就知道相交点坐标。球心运动t时,会与平面相交。交点p,以向量表示(x,y,z)。

2023-10-12 21:00:00 896

原创 《3D 数学基础》几何检测-最近点

AABB(Axis-Aligned Bounding Box,轴对齐的包围盒)是一个在三维空间中常用于表示物体边界的几何形状,通常由两个对角点(最小点和最大点)定义。(2)带入公式p(t) = p_org + td即可求得q'=p_org + (d·(q-p_org))d。d是c-q,其中加粗都是向量表示的点坐标。其中q是平面外的点,平面公式是q·n=d. p是平面上的点,n是法向量。其中p_org是起始点,d是单位向量,t是自变量,可以无限大。q'是距离q的最近点,也就是q在直线上的投影。

2023-10-12 13:52:53 738

原创 编译ctk源码

编译ctk

2023-09-21 20:15:00 498

原创 编译vtk源码

编译vtk,qt使用vtk操作3d数据

2023-09-21 13:38:46 823

原创 在线安装qt5.15之后任意版本

进入cmd,用命令行打开安装包,并指定组件下载地址(这个是关键,之前用的是腾讯镜像,出现了版本灰色无法选中问题)这里选择安装5.15.2版本。

2023-09-21 09:49:33 962

原创 nodeeditor 源码阅读 - NumberSourceDataModel 自定义输入节点模型

【代码】nodeeditor 源码阅读 - NumberSourceDataModel 自定义输入节点模型。

2023-09-11 17:16:39 262

原创 nodeeditor 源码阅读 - NodeDelegateModelRegistry节点代理模型注册器

这段代码是用于管理节点模型的注册和创建的类的实现。它包括了已注册模型的功能。

2023-09-11 15:58:32 234 2

原创 nodeeditor 源码阅读 - NodeDelegateModel节点代理模型

这段代码是一个节点模型的实现,它包括了保存和加载节点数据、设置端口连接策略、获取和设置节点样式等功能。

2023-09-11 15:39:43 254

原创 nodeeditor 源码阅读 - Definition库声明

枚举类型:(1)NodeRole节点属性,比如节点类型、节点标题、节点输入输出端口数、节点位置等;(2) NodeFlag,是否允许调整节点大小;(3)

2023-09-10 23:48:51 661

原创 nodeeditor 源码阅读 - NodeData节点数据

(1)一个结构体NodeDataType;(2)一个类NodeData:两个方法,一个是判断两个节点数据类型是否一样,一个是获取节点数据类型。(3)声明NodeDataType类型为元类型,元类型的作用:主要作用是在QObject的属性系统(信号槽)中使用该自定义类型。

2023-09-10 18:22:13 331

原创 nodeeditor 源码阅读 - NodeDelegateModelRegistry节点代理模型注册器

【代码】nodeeditor 源码阅读 - NodeDelegateModelRegistry节点代理模型注册器。

2023-09-10 16:41:00 197

opencv4.5.0-gpu版(附加cuda10)

window,cuda10环境下,编译的opencv4.5.0-gpu版。 opencv目录: bin include x64 cuda10目录: bin include lib

2023-09-01

图像分类数据集:hymenoptera-data

彩色图像,包含了两个类别:蚂蚁和蜜蜂。 可用于图像分类任务。 文件夹形式如下: train: ants bees val: ants bees

2022-10-14

labelme标注的voc分割数据

注意:该数据集是用于图像分割的,且是人物图像分割。 包含了训练集合和测试集合。 训练集:32张 测试集:8张 由于数据集小,所以此数据集只用于快速验证分割网络的搭建。

2022-08-16

opencv4.5.0对应的.cache文件夹

里面的文件完整,如下所示: ade data ffmpeg ippicv nvidia_optical_flow xfeatures2d .gitignore

2022-02-26

分割模型fcn.onnx

github下载太慢了,这里备份下。 原始下载路径:https://github.com/onnx/models/blob/main/vision/object_detection_segmentation/fcn/model/fcn-resnet50-11.tar.gz 其他权重下载路径:https://github.com/onnx/models/tree/main/vision/object_detection_segmentation/fcn

2022-02-12

alexnet.onnx权重

生成该权重代码: import torch import torchvision # use Trace to export onnx model dummy_input = torch.randn(10, 3, 224, 224, device='cuda') # 定义模型的输入shape model = torchvision.models.alexnet(pretrained=True).cuda() # if delete cuda(), will generate onnx model with no cuda. input_names = ['inputs'] output_names = ['outputs'] torch.onnx.export(model, dummy_input, f='alexnet.onnx', verbose=True, input_names=input_names, output_names=output_names, opset_version=10)

2022-02-12

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除