windows7 python3.7对应cuda_win7+cuda+anaconda python+tensorflow-gpu+keras安装成功版本匹配汇总...

大家在安装配置过程中遇到了很多坑,其中大部分和软件之间的版本兼容性有关,在此,列出了不同软件版本之间的配置兼容性,方便安装配置。

PathCompilerCUDA/cuDNNSIMDNotes

1.14.0\py37\CPU\sse2

VS2019 16.1

No

x86_64

Python 3.7

1.14.0\py37\CPU\avx2

VS2019 16.1

No

AVX2

Python 3.7

1.14.0\py37\GPU\cuda101cudnn76sse2

VS2019 16.1

10.1.168_425.25/7.6.0.64

x86_64

Python 3.7/Compute 3.0

1.14.0\py37\GPU\cuda101cudnn76avx2

VS2019 16.1

10.1.168_425.25/7.6.0.64

AVX2

Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5

1.13.1\py37\CPU\sse2

VS2017 15.9

No

x86_64

Python 3.7

1.13.1\py37\CPU\avx2

VS2017 15.9

No

AVX2

Python 3.7

1.13.1\py37\GPU\cuda101cudnn75sse2

VS2017 15.9

10.1.105_418.96/7.5.0.56

x86_64

Python 3.7/Compute 3.0

1.13.1\py37\GPU\cuda101cudnn75avx2

VS2017 15.9

10.1.105_418.96/7.5.0.56

AVX2

Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5

1.12.0\py36\CPU\sse2

VS2017 15.8

No

x86_64

Python 3.6

1.12.0\py36\CPU\avx2

VS2017 15.8

No

AVX2

Python 3.6

1.12.0\py36\GPU\cuda100cudnn73sse2

VS2017 15.8

10.0.130_411.31/7.3.1.20

x86_64

Python 3.6/Compute 3.0

1.12.0\py36\GPU\cuda100cudnn73avx2

VS2017 15.8

10.0.130_411.31/7.3.1.20

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5

1.12.0\py37\CPU\sse2

VS2017 15.8

No

x86_64

Python 3.7

1.12.0\py37\CPU\avx2

VS2017 15.8

No

AVX2

Python 3.7

1.12.0\py37\GPU\cuda100cudnn73sse2

VS2017 15.8

10.0.130_411.31/7.3.1.20

x86_64

Python 3.7/Compute 3.0

1.12.0\py37\GPU\cuda100cudnn73avx2

VS2017 15.8

10.0.130_411.31/7.3.1.20

AVX2

Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5

1.11.0\py36\CPU\sse2

VS2017 15.8

No

x86_64

Python 3.6

1.11.0\py36\CPU\avx2

VS2017 15.8

No

AVX2

Python 3.6

1.11.0\py36\GPU\cuda100cudnn73sse2

VS2017 15.8

10.0.130_411.31/7.3.0.29

x86_64

Python 3.6/Compute 3.0

1.11.0\py36\GPU\cuda100cudnn73avx2

VS2017 15.8

10.0.130_411.31/7.3.0.29

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5

1.11.0\py37\CPU\sse2

VS2017 15.8

No

x86_64

Python 3.7

1.11.0\py37\CPU\avx2

VS2017 15.8

No

AVX2

Python 3.7

1.11.0\py37\GPU\cuda100cudnn73sse2

VS2017 15.8

10.0.130_411.31/7.3.0.29

x86_64

Python 3.7/Compute 3.0

1.11.0\py37\GPU\cuda100cudnn73avx2

VS2017 15.8

10.0.130_411.31/7.3.0.29

AVX2

Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5

1.10.0\py36\CPU\sse2

VS2017 15.8

No

x86_64

Python 3.6

1.10.0\py36\CPU\avx2

VS2017 15.8

No

AVX2

Python 3.6

1.10.0\py36\GPU\cuda92cudnn72sse2

VS2017 15.8

9.2.148.1/7.2.1.38

x86_64

Python 3.6/Compute 3.0

1.10.0\py36\GPU\cuda92cudnn72avx2

VS2017 15.8

9.2.148.1/7.2.1.38

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.10.0\py27\CPU\sse2

VS2017 15.8

No

x86_64

Python 2.7

1.10.0\py27\CPU\avx2

VS2017 15.8

No

AVX2

Python 2.7

1.10.0\py27\GPU\cuda92cudnn72sse2

VS2017 15.8

9.2.148.1/7.2.1.38

x86_64

Python 2.7/Compute 3.0

1.10.0\py27\GPU\cuda92cudnn72avx2

VS2017 15.8

9.2.148.1/7.2.1.38

AVX2

Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.9.0\py36\CPU\sse2

VS2017 15.7

No

x86_64

Python 3.6

1.9.0\py36\CPU\avx2

VS2017 15.7

No

AVX2

Python 3.6

1.9.0\py36\GPU\cuda92cudnn71sse2

VS2017 15.7

9.2.148/7.1.4

x86_64

Python 3.6/Compute 3.0

1.9.0\py36\GPU\cuda92cudnn71avx2

VS2017 15.7

9.2.148/7.1.4

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.9.0\py27\CPU\sse2

VS2017 15.7

No

x86_64

Python 2.7

1.9.0\py27\CPU\avx2

VS2017 15.7

No

AVX2

Python 2.7

1.9.0\py27\GPU\cuda92cudnn71sse2

VS2017 15.7

9.2.148/7.1.4

x86_64

Python 2.7/Compute 3.0

1.9.0\py27\GPU\cuda92cudnn71avx2

VS2017 15.7

9.2.148/7.1.4

AVX2

Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.8.0\py36\CPU\sse2

VS2017 15.4

No

x86_64

Python 3.6

1.8.0\py36\CPU\avx2

VS2017 15.4

No

AVX2

Python 3.6

1.8.0\py36\GPU\cuda91cudnn71sse2

VS2017 15.4

9.1.85.3/7.1.3

x86_64

Python 3.6/Compute 3.0

1.8.0\py36\GPU\cuda91cudnn71avx2

VS2017 15.4

9.1.85.3/7.1.3

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.8.0\py27\CPU\sse2

VS2017 15.4

No

x86_64

Python 2.7

1.8.0\py27\CPU\avx2

VS2017 15.4

No

AVX2

Python 2.7

1.8.0\py27\GPU\cuda91cudnn71sse2

VS2017 15.4

9.1.85.3/7.1.3

x86_64

Python 2.7/Compute 3.0

1.8.0\py27\GPU\cuda91cudnn71avx2

VS2017 15.4

9.1.85.3/7.1.3

AVX2

Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.7.0\py36\CPU\sse2

VS2017 15.4

No

x86_64

Python 3.6

1.7.0\py36\CPU\avx2

VS2017 15.4

No

AVX2

Python 3.6

1.7.0\py36\GPU\cuda91cudnn71sse2

VS2017 15.4

9.1.85.3/7.1.2

x86_64

Python 3.6/Compute 3.0

1.7.0\py36\GPU\cuda91cudnn71avx2

VS2017 15.4

9.1.85.3/7.1.2

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.7.0\py27\CPU\sse2

VS2017 15.4

No

x86_64

Python 2.7

1.7.0\py27\CPU\avx2

VS2017 15.4

No

AVX2

Python 2.7

1.7.0\py27\GPU\cuda91cudnn71sse2

VS2017 15.4

9.1.85.3/7.1.2

x86_64

Python 2.7/Compute 3.0

1.7.0\py27\GPU\cuda91cudnn71avx2

VS2017 15.4

9.1.85.3/7.1.2

AVX2

Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.6.0\py36\CPU\sse2

VS2017 15.4

No

x86_64

Python 3.6

1.6.0\py36\CPU\avx2

VS2017 15.4

No

AVX2

Python 3.6

1.6.0\py36\GPU\cuda91cudnn71sse2

VS2017 15.4

9.1.85.3/7.1.1

x86_64

Python 3.6/Compute 3.0

1.6.0\py36\GPU\cuda91cudnn71avx2

VS2017 15.4

9.1.85.3/7.1.1

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.6.0\py27\CPU\sse2

VS2017 15.4

No

x86_64

Python 2.7

1.6.0\py27\CPU\avx2

VS2017 15.4

No

AVX2

Python 2.7

1.6.0\py27\GPU\cuda91cudnn71sse2

VS2017 15.4

9.1.85.2/7.1.1

x86_64

Python 2.7/Compute 3.0

1.6.0\py27\GPU\cuda91cudnn71avx2

VS2017 15.4

9.1.85.2/7.1.1

AVX2

Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.5.0\py36\CPU\avx

VS2017 15.4

No

AVX

Python 3.6

1.5.0\py36\CPU\avx2

VS2017 15.4

No

AVX2

Python 3.6

1.5.0\py36\GPU\cuda91cudnn7avx2

VS2017 15.4

9.1.85/7.0.5

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.5.0\py27\CPU\sse2

VS2017 15.4

No

x86_64

Python 2.7

1.5.0\py27\CPU\avx

VS2017 15.4

No

AVX

Python 2.7

1.5.0\py27\CPU\avx2

VS2017 15.4

No

AVX2

Python 2.7

1.5.0\py27\GPU\cuda91cudnn7sse2

VS2017 15.4

9.1.85/7.0.5

x86_64

Python 2.7/Compute 3.0

1.5.0\py27\GPU\cuda91cudnn7avx2

VS2017 15.4

9.1.85/7.0.5

AVX2

Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.4.0\py36\CPU\avx

VS2017 15.4

No

AVX

Python 3.6

1.4.0\py36\CPU\avx2

VS2017 15.4

No

AVX2

Python 3.6

1.4.0\py36\GPU\cuda91cudnn7avx2

VS2017 15.4

9.1.85/7.0.5

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0

1.3.0\py36\CPU\avx

VS2015 Update 3

No

AVX

Python 3.6

1.3.0\py36\CPU\avx2

VS2015 Update 3

No

AVX2

Python 3.6

1.3.0\py36\GPU\cuda8cudnn6avx2

VS2015 Update 3

8.0.61.2/6.0.21

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1

1.2.1\py36\CPU\avx

VS2015 Update 3

No

AVX

Python 3.6

1.2.1\py36\CPU\avx2

VS2015 Update 3

No

AVX2

Python 3.6

1.2.1\py36\GPU\cuda8cudnn6avx2

VS2015 Update 3

8.0.61.2/6.0.21

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1

1.1.0\py36\CPU\avx

VS2015 Update 3

No

AVX

Python 3.6

1.1.0\py36\CPU\avx2

VS2015 Update 3

No

AVX2

Python 3.6

1.1.0\py36\GPU\cuda8cudnn6avx2

VS2015 Update 3

8.0.61.2/6.0.21

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1

1.0.0\py36\CPU\sse2

VS2015 Update 3

No

x86_64

Python 3.6

1.0.0\py36\CPU\avx

VS2015 Update 3

No

AVX

Python 3.6

1.0.0\py36\CPU\avx2

VS2015 Update 3

No

AVX2

Python 3.6

1.0.0\py36\GPU\cuda8cudnn51sse2

VS2015 Update 3

8.0.61.2/5.1.10

x86_64

Python 3.6/Compute 3.0

1.0.0\py36\GPU\cuda8cudnn51avx2

VS2015 Update 3

8.0.61.2/5.1.10

AVX2

Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1

0.12.0\py35\CPU\avx

VS2015 Update 3

No

AVX

Python 3.5

0.12.0\py35\CPU\avx2

VS2015 Update 3

No

AVX2

Python 3.5

0.12.0\py35\GPU\cuda8cudnn51avx2

VS2015 Update 3

8.0.61.2/5.1.10

AVX2

Python 3.5/Compute 3.0,3.5,5.0,5.2,6.1

tensorflow CUDA cudnn 版本对应关系

linux下:

windows下:

上面两张图是在这里找到的:https://tensorflow.google.cn/install/source  (右上角language选English)

tensorflow和keras版本搭配

anaconda python 版本对应关系

本文链接:https://blog.csdn.net/yuejisuo1948/article/details/81043823

首先解释一下上表。 anaconda在每次发布新版本的时候都会给python3和python2都发布一个包,版本号是一样的。

表格中,python版本号下方的离它最近的anaconda包就是包含它的版本。

举个例子,假设你想安装python2.7.14,在表格中找到它,它下方的三个anaconda包(anaconda2-5.0.1、5.1.0、5.2.0)都包含python2.7.14;

假设你想安装python3.6.5,在表格中找到它,它下方的anaconda3-5.2.0就是你需要下载的包;

假设你想安装python3.7.0,在表格中找到它,它下方的anaconda3-5.3.0或5.3.1就是你需要下载的包;

镜像下载地址:清华镜像源

官方下载地址:https://repo.anaconda.com/archive/

win7 vs2015 cuda9.0 安装 Tensorflow-gpu 1.8

cuda_9.0.176_windows.exe

cudnn-9.0-windows7-x64-v7.zip

python-3.5.4-amd64.exe

WIN7系统安装 tensorflow1.6.0 + CUDA9.0 + cudnn7 版本

Anaconda3   5.2.0

CUDA9.0 + cudnn7 (9.1版本不支持tensorflow)

tensorflow-gpu 1.6.0

防坑 centos7 安装 CUDA9.0 + cudnn7.1 +TensorFlow GPU版1.6.0/1.8.0

简单来说:tf1.5及以上用只能是cuda9.0,其他的tf1.4及以下版本就是cuda8.0等,最好自己去查查!可恶的是tf官方和nVidia都没有版本对应的说明!!!

Windows 7下安装TensorFlow1.6(cuda9.0+cuDNN 7.0+python3.5+pip9)

win7 x64 安装 TensorFlow1.6 CUDA 9.1+cuDNN7.1( 7.0.5)+python3.6 (python 3.5.2)

win7+anaconda3+cuda9.0+CuDNN7+tensorflow-gpu+pycharm配置

tensorflow 安装GPU版本,个人总结,步骤比较详细

TensorFlow 安装GPU版本

python+tensorflow+tensorflow-gpu+CUDA+cuDNN+pycharm全套环境配置教程 推荐

深度学习环境搭建-CUDA9.0、cudnn7.3、tensorflow_gpu1.10的安装

win7 vs2015 cuda9.0 安装 Tensorflow-gpu 1.8

WIN7系统安装 tensorflow1.6.0 + CUDA9.0 + cudnn7 版本

Windows 7下安装TensorFlow1.6(cuda9.0+cuDNN 7.0+python3.5+pip9)

匹配tensorflow-gpu和keras:

tensorflow 1.5 和keras 2.1.3、keras 2.1.4、keras 2.3.0(运行代码会报错)

tensorflow 1.4和keras 2.1.3

tensorflow 1.3和keras 2.1.2

tensorflow  1.2和keras 2.1.1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值