大家在安装配置过程中遇到了很多坑,其中大部分和软件之间的版本兼容性有关,在此,列出了不同软件版本之间的配置兼容性,方便安装配置。
PathCompilerCUDA/cuDNNSIMDNotes
1.14.0\py37\CPU\sse2
VS2019 16.1
No
x86_64
Python 3.7
1.14.0\py37\CPU\avx2
VS2019 16.1
No
AVX2
Python 3.7
1.14.0\py37\GPU\cuda101cudnn76sse2
VS2019 16.1
10.1.168_425.25/7.6.0.64
x86_64
Python 3.7/Compute 3.0
1.14.0\py37\GPU\cuda101cudnn76avx2
VS2019 16.1
10.1.168_425.25/7.6.0.64
AVX2
Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.13.1\py37\CPU\sse2
VS2017 15.9
No
x86_64
Python 3.7
1.13.1\py37\CPU\avx2
VS2017 15.9
No
AVX2
Python 3.7
1.13.1\py37\GPU\cuda101cudnn75sse2
VS2017 15.9
10.1.105_418.96/7.5.0.56
x86_64
Python 3.7/Compute 3.0
1.13.1\py37\GPU\cuda101cudnn75avx2
VS2017 15.9
10.1.105_418.96/7.5.0.56
AVX2
Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py36\CPU\sse2
VS2017 15.8
No
x86_64
Python 3.6
1.12.0\py36\CPU\avx2
VS2017 15.8
No
AVX2
Python 3.6
1.12.0\py36\GPU\cuda100cudnn73sse2
VS2017 15.8
10.0.130_411.31/7.3.1.20
x86_64
Python 3.6/Compute 3.0
1.12.0\py36\GPU\cuda100cudnn73avx2
VS2017 15.8
10.0.130_411.31/7.3.1.20
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.12.0\py37\CPU\sse2
VS2017 15.8
No
x86_64
Python 3.7
1.12.0\py37\CPU\avx2
VS2017 15.8
No
AVX2
Python 3.7
1.12.0\py37\GPU\cuda100cudnn73sse2
VS2017 15.8
10.0.130_411.31/7.3.1.20
x86_64
Python 3.7/Compute 3.0
1.12.0\py37\GPU\cuda100cudnn73avx2
VS2017 15.8
10.0.130_411.31/7.3.1.20
AVX2
Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py36\CPU\sse2
VS2017 15.8
No
x86_64
Python 3.6
1.11.0\py36\CPU\avx2
VS2017 15.8
No
AVX2
Python 3.6
1.11.0\py36\GPU\cuda100cudnn73sse2
VS2017 15.8
10.0.130_411.31/7.3.0.29
x86_64
Python 3.6/Compute 3.0
1.11.0\py36\GPU\cuda100cudnn73avx2
VS2017 15.8
10.0.130_411.31/7.3.0.29
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.11.0\py37\CPU\sse2
VS2017 15.8
No
x86_64
Python 3.7
1.11.0\py37\CPU\avx2
VS2017 15.8
No
AVX2
Python 3.7
1.11.0\py37\GPU\cuda100cudnn73sse2
VS2017 15.8
10.0.130_411.31/7.3.0.29
x86_64
Python 3.7/Compute 3.0
1.11.0\py37\GPU\cuda100cudnn73avx2
VS2017 15.8
10.0.130_411.31/7.3.0.29
AVX2
Python 3.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0,7.5
1.10.0\py36\CPU\sse2
VS2017 15.8
No
x86_64
Python 3.6
1.10.0\py36\CPU\avx2
VS2017 15.8
No
AVX2
Python 3.6
1.10.0\py36\GPU\cuda92cudnn72sse2
VS2017 15.8
9.2.148.1/7.2.1.38
x86_64
Python 3.6/Compute 3.0
1.10.0\py36\GPU\cuda92cudnn72avx2
VS2017 15.8
9.2.148.1/7.2.1.38
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.10.0\py27\CPU\sse2
VS2017 15.8
No
x86_64
Python 2.7
1.10.0\py27\CPU\avx2
VS2017 15.8
No
AVX2
Python 2.7
1.10.0\py27\GPU\cuda92cudnn72sse2
VS2017 15.8
9.2.148.1/7.2.1.38
x86_64
Python 2.7/Compute 3.0
1.10.0\py27\GPU\cuda92cudnn72avx2
VS2017 15.8
9.2.148.1/7.2.1.38
AVX2
Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py36\CPU\sse2
VS2017 15.7
No
x86_64
Python 3.6
1.9.0\py36\CPU\avx2
VS2017 15.7
No
AVX2
Python 3.6
1.9.0\py36\GPU\cuda92cudnn71sse2
VS2017 15.7
9.2.148/7.1.4
x86_64
Python 3.6/Compute 3.0
1.9.0\py36\GPU\cuda92cudnn71avx2
VS2017 15.7
9.2.148/7.1.4
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.9.0\py27\CPU\sse2
VS2017 15.7
No
x86_64
Python 2.7
1.9.0\py27\CPU\avx2
VS2017 15.7
No
AVX2
Python 2.7
1.9.0\py27\GPU\cuda92cudnn71sse2
VS2017 15.7
9.2.148/7.1.4
x86_64
Python 2.7/Compute 3.0
1.9.0\py27\GPU\cuda92cudnn71avx2
VS2017 15.7
9.2.148/7.1.4
AVX2
Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py36\CPU\sse2
VS2017 15.4
No
x86_64
Python 3.6
1.8.0\py36\CPU\avx2
VS2017 15.4
No
AVX2
Python 3.6
1.8.0\py36\GPU\cuda91cudnn71sse2
VS2017 15.4
9.1.85.3/7.1.3
x86_64
Python 3.6/Compute 3.0
1.8.0\py36\GPU\cuda91cudnn71avx2
VS2017 15.4
9.1.85.3/7.1.3
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.8.0\py27\CPU\sse2
VS2017 15.4
No
x86_64
Python 2.7
1.8.0\py27\CPU\avx2
VS2017 15.4
No
AVX2
Python 2.7
1.8.0\py27\GPU\cuda91cudnn71sse2
VS2017 15.4
9.1.85.3/7.1.3
x86_64
Python 2.7/Compute 3.0
1.8.0\py27\GPU\cuda91cudnn71avx2
VS2017 15.4
9.1.85.3/7.1.3
AVX2
Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py36\CPU\sse2
VS2017 15.4
No
x86_64
Python 3.6
1.7.0\py36\CPU\avx2
VS2017 15.4
No
AVX2
Python 3.6
1.7.0\py36\GPU\cuda91cudnn71sse2
VS2017 15.4
9.1.85.3/7.1.2
x86_64
Python 3.6/Compute 3.0
1.7.0\py36\GPU\cuda91cudnn71avx2
VS2017 15.4
9.1.85.3/7.1.2
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.7.0\py27\CPU\sse2
VS2017 15.4
No
x86_64
Python 2.7
1.7.0\py27\CPU\avx2
VS2017 15.4
No
AVX2
Python 2.7
1.7.0\py27\GPU\cuda91cudnn71sse2
VS2017 15.4
9.1.85.3/7.1.2
x86_64
Python 2.7/Compute 3.0
1.7.0\py27\GPU\cuda91cudnn71avx2
VS2017 15.4
9.1.85.3/7.1.2
AVX2
Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py36\CPU\sse2
VS2017 15.4
No
x86_64
Python 3.6
1.6.0\py36\CPU\avx2
VS2017 15.4
No
AVX2
Python 3.6
1.6.0\py36\GPU\cuda91cudnn71sse2
VS2017 15.4
9.1.85.3/7.1.1
x86_64
Python 3.6/Compute 3.0
1.6.0\py36\GPU\cuda91cudnn71avx2
VS2017 15.4
9.1.85.3/7.1.1
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.6.0\py27\CPU\sse2
VS2017 15.4
No
x86_64
Python 2.7
1.6.0\py27\CPU\avx2
VS2017 15.4
No
AVX2
Python 2.7
1.6.0\py27\GPU\cuda91cudnn71sse2
VS2017 15.4
9.1.85.2/7.1.1
x86_64
Python 2.7/Compute 3.0
1.6.0\py27\GPU\cuda91cudnn71avx2
VS2017 15.4
9.1.85.2/7.1.1
AVX2
Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py36\CPU\avx
VS2017 15.4
No
AVX
Python 3.6
1.5.0\py36\CPU\avx2
VS2017 15.4
No
AVX2
Python 3.6
1.5.0\py36\GPU\cuda91cudnn7avx2
VS2017 15.4
9.1.85/7.0.5
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.5.0\py27\CPU\sse2
VS2017 15.4
No
x86_64
Python 2.7
1.5.0\py27\CPU\avx
VS2017 15.4
No
AVX
Python 2.7
1.5.0\py27\CPU\avx2
VS2017 15.4
No
AVX2
Python 2.7
1.5.0\py27\GPU\cuda91cudnn7sse2
VS2017 15.4
9.1.85/7.0.5
x86_64
Python 2.7/Compute 3.0
1.5.0\py27\GPU\cuda91cudnn7avx2
VS2017 15.4
9.1.85/7.0.5
AVX2
Python 2.7/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.4.0\py36\CPU\avx
VS2017 15.4
No
AVX
Python 3.6
1.4.0\py36\CPU\avx2
VS2017 15.4
No
AVX2
Python 3.6
1.4.0\py36\GPU\cuda91cudnn7avx2
VS2017 15.4
9.1.85/7.0.5
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1,7.0
1.3.0\py36\CPU\avx
VS2015 Update 3
No
AVX
Python 3.6
1.3.0\py36\CPU\avx2
VS2015 Update 3
No
AVX2
Python 3.6
1.3.0\py36\GPU\cuda8cudnn6avx2
VS2015 Update 3
8.0.61.2/6.0.21
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.2.1\py36\CPU\avx
VS2015 Update 3
No
AVX
Python 3.6
1.2.1\py36\CPU\avx2
VS2015 Update 3
No
AVX2
Python 3.6
1.2.1\py36\GPU\cuda8cudnn6avx2
VS2015 Update 3
8.0.61.2/6.0.21
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.1.0\py36\CPU\avx
VS2015 Update 3
No
AVX
Python 3.6
1.1.0\py36\CPU\avx2
VS2015 Update 3
No
AVX2
Python 3.6
1.1.0\py36\GPU\cuda8cudnn6avx2
VS2015 Update 3
8.0.61.2/6.0.21
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
1.0.0\py36\CPU\sse2
VS2015 Update 3
No
x86_64
Python 3.6
1.0.0\py36\CPU\avx
VS2015 Update 3
No
AVX
Python 3.6
1.0.0\py36\CPU\avx2
VS2015 Update 3
No
AVX2
Python 3.6
1.0.0\py36\GPU\cuda8cudnn51sse2
VS2015 Update 3
8.0.61.2/5.1.10
x86_64
Python 3.6/Compute 3.0
1.0.0\py36\GPU\cuda8cudnn51avx2
VS2015 Update 3
8.0.61.2/5.1.10
AVX2
Python 3.6/Compute 3.0,3.5,5.0,5.2,6.1
0.12.0\py35\CPU\avx
VS2015 Update 3
No
AVX
Python 3.5
0.12.0\py35\CPU\avx2
VS2015 Update 3
No
AVX2
Python 3.5
0.12.0\py35\GPU\cuda8cudnn51avx2
VS2015 Update 3
8.0.61.2/5.1.10
AVX2
Python 3.5/Compute 3.0,3.5,5.0,5.2,6.1
tensorflow CUDA cudnn 版本对应关系
linux下:
windows下:
上面两张图是在这里找到的:https://tensorflow.google.cn/install/source (右上角language选English)
tensorflow和keras版本搭配
anaconda python 版本对应关系
本文链接:https://blog.csdn.net/yuejisuo1948/article/details/81043823
首先解释一下上表。 anaconda在每次发布新版本的时候都会给python3和python2都发布一个包,版本号是一样的。
表格中,python版本号下方的离它最近的anaconda包就是包含它的版本。
举个例子,假设你想安装python2.7.14,在表格中找到它,它下方的三个anaconda包(anaconda2-5.0.1、5.1.0、5.2.0)都包含python2.7.14;
假设你想安装python3.6.5,在表格中找到它,它下方的anaconda3-5.2.0就是你需要下载的包;
假设你想安装python3.7.0,在表格中找到它,它下方的anaconda3-5.3.0或5.3.1就是你需要下载的包;
镜像下载地址:清华镜像源
官方下载地址:https://repo.anaconda.com/archive/
win7 vs2015 cuda9.0 安装 Tensorflow-gpu 1.8
cuda_9.0.176_windows.exe
cudnn-9.0-windows7-x64-v7.zip
python-3.5.4-amd64.exe
WIN7系统安装 tensorflow1.6.0 + CUDA9.0 + cudnn7 版本
Anaconda3 5.2.0
CUDA9.0 + cudnn7 (9.1版本不支持tensorflow)
tensorflow-gpu 1.6.0
防坑 centos7 安装 CUDA9.0 + cudnn7.1 +TensorFlow GPU版1.6.0/1.8.0
简单来说:tf1.5及以上用只能是cuda9.0,其他的tf1.4及以下版本就是cuda8.0等,最好自己去查查!可恶的是tf官方和nVidia都没有版本对应的说明!!!
Windows 7下安装TensorFlow1.6(cuda9.0+cuDNN 7.0+python3.5+pip9)
win7 x64 安装 TensorFlow1.6 CUDA 9.1+cuDNN7.1( 7.0.5)+python3.6 (python 3.5.2)
win7+anaconda3+cuda9.0+CuDNN7+tensorflow-gpu+pycharm配置
tensorflow 安装GPU版本,个人总结,步骤比较详细
TensorFlow 安装GPU版本
python+tensorflow+tensorflow-gpu+CUDA+cuDNN+pycharm全套环境配置教程 推荐
深度学习环境搭建-CUDA9.0、cudnn7.3、tensorflow_gpu1.10的安装
win7 vs2015 cuda9.0 安装 Tensorflow-gpu 1.8
WIN7系统安装 tensorflow1.6.0 + CUDA9.0 + cudnn7 版本
Windows 7下安装TensorFlow1.6(cuda9.0+cuDNN 7.0+python3.5+pip9)
匹配tensorflow-gpu和keras:
tensorflow 1.5 和keras 2.1.3、keras 2.1.4、keras 2.3.0(运行代码会报错)
tensorflow 1.4和keras 2.1.3
tensorflow 1.3和keras 2.1.2
tensorflow 1.2和keras 2.1.1