x1131230123
码龄8年
  • 932,373
    被访问
  • 792
    原创
  • 921
    排名
  • 1,561
    粉丝
关注
提问 私信

个人简介:技术交流

  • 加入CSDN时间: 2014-11-15
博客简介:

q742971636的博客

查看详细资料
  • 8
    领奖
    总分 5,784 当月 186
个人成就
  • 获得1,159次点赞
  • 内容获得858次评论
  • 获得5,909次收藏
创作历程
  • 78篇
    2022年
  • 318篇
    2021年
  • 323篇
    2020年
  • 74篇
    2019年
成就勋章
TA的专栏
  • 算法题目
    36篇
  • 深度学习机器学习
    101篇
  • 数学
    4篇
  • Linux与运维
    41篇
  • Docker
    14篇
  • python语言
    147篇
  • 文字摘录
    6篇
  • 工具类
    27篇
  • 动手写模型
    1篇
  • 见闻
    2篇
  • WRF-CMAQ
    11篇
  • OpenCV图像处理
    11篇
  • Milvus
    2篇
  • TB作品
    234篇
  • 论文
    5篇
  • Java
    1篇
  • WEB开发
    19篇
  • 人脸识别
    3篇
  • SQL
    1篇
  • 生活
    1篇
  • markdown
    2篇
  • 飞桨PaddlePaddle
    2篇
  • 数据结构
    18篇
  • face-recognition
  • 数据工具类
    1篇
  • 数据挖掘
    3篇
  • C语言
    2篇
  • 区块链
    1篇
  • Go语言
  • 笔记
    15篇
  • 杂七杂八
    3篇
  • MATLAB
    13篇
  • C/C++
    4篇
  • 办公操作
    2篇
  • L-Edit
    1篇
  • Android
    2篇
  • lumerical 光电
    1篇
  • pyqt4
  • 单片机
    92篇
兴趣领域 设置
  • 数据结构与算法
    排序算法推荐算法
  • 人工智能
    opencvcaffetensorflowmxnetpytorchnlpscikit-learn聚类集成学习迁移学习分类回归
  • 最近
  • 文章
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

【算法题目】【DFS】【一点资讯面试题】二叉树删除节点剩余子树数量

普通二叉树,每个节点的数值不相同。写一个函数,输入是树的根节点和要删除的节点的集合,删除某个节点意味着去除掉和这个节点的关联,剩下的都是子树,函数返回剩余子树数量。input:root,{1}output:2input:root,{1,2,5}output:2input:root,{1,2}output:3input:root,{4}output:3input:root,{4,9}output:2程序还有点问题:import copyfrom typing import Set.
原创
发布博客 2022.05.12 ·
87 阅读 ·
0 点赞 ·
0 评论

【深度学习】V-Net 3D医学图像分割 Dice loss 损失

论文:https://arxiv.org/abs/1606.04797论文本文引入Dice coefficient 去处理医学3D图像里面 前景和背景体素数量严重不平衡的情况。网络用于处理3D图像输入,采用编码-解码的框架(很像U-Net网络):在2个二进制立方体中dice coefficient D可以被写成:pi∈Ppi∈Ppi∈P 是模型输出的分割结果的立方体。gi∈Ggi∈Ggi∈G是gt立方体。立方体表示的是3D图像。取立方体中的每个像素数值做计算。Dice loss原论文对
原创
发布博客 2022.05.06 ·
349 阅读 ·
0 点赞 ·
0 评论

【深度学习】图像分割的难点

这段时间的学习都围绕这篇文章展开: https://zhuanlan.zhihu.com/p/72743589图像分割领域的难点:(1)多尺度问题;(2)物体多姿态(或者多视角)问题;(3)光照问题;(4)分割边缘不准的问题;因为相邻临的像素对应感受野内的图像信息太过相似导致,解决方向:对网络输出的分割的边界增加额外的损失,或者让网络对边界的特征和区域内部的特征分开建模学习。其本质上的思想还是让网络同时做两个任务:分割和边缘检测。另外,提高输入图像的输入分辨率和中间层特征图的分辨率同样也是简单有
原创
发布博客 2022.04.28 ·
2175 阅读 ·
0 点赞 ·
0 评论

【数学】【概率论】如何理解贝叶斯概率

1 条件概率事件A在事件B发生的条件下发生的概率,条件概率表示为P(A∣B)P(A|B)P(A∣B)。性别是男定义为事件B,职业是教师定义为事件A。在下面数据中,如果已经性别是男(B),那么是职业是教师(A)的概率是多少?男性3名,其中教师2名,答案就是P(A∣B)=23P(A|B)= \frac{2}{3}P(A∣B)=32​。反过来问,职业是教师(A),性别是男(B)的概率是多少?同理,答案就是P(B∣A)=28P(B|A)= \frac{2}{8}P(B∣A)=82​。男 教师男
原创
发布博客 2022.04.27 ·
269 阅读 ·
0 点赞 ·
0 评论

【深度学习】SSD 网络 Single Shot MultiBox Detector

论文地址:https://arxiv.org/abs/1512.02325SSD 网络 没有第二版, 技术上其实没多少可说的,罗列一些点方便自己回忆吧:(1)SSD是one-stage模型;(2)SSD是多框预测;(3)SSD采用VGG16,在VGG16的基础上新增了卷积层来获得更多的特征图以用于检测;(4)SSD采用anchor based;(5)SSD打败yolov1的主要原因是anchor based先验框+无全连接层;结构:损失函数:学习:https://zhuanlan
原创
发布博客 2022.04.25 ·
552 阅读 ·
0 点赞 ·
0 评论

【深度学习】SPP空间金字塔网络 fasterrcnn yolo中如何使用SPP网络

SPPnet neck https://arxiv.org/pdf/1406.4729.pdf文章目录1 SPP网络的目的2 SPP网络如何计算3 SPP网络的应用1 SPP网络的目的很简单,第一是要清楚SPPnet 用在哪里,用来的目的是什么?用在CNN backbone的后面neck部分,能够以另类方式做池化,使得经过这一层后的输出size不变。不同尺寸原始图像输入到CNN backbone后,得出的输出是不一样尺寸的,加个SPPnet 就OK了。2 SPP网络如何计算第二要清楚如何计
原创
发布博客 2022.04.25 ·
2273 阅读 ·
0 点赞 ·
0 评论

【算法题目】浮点数的 n次方根 n次方 ,牛顿迭代法

浮点数的 n次方根:class Solution: def sqrt_n(self, y, n) -> int: # f(x)=x**n-y=0 # f`(x)=n*x^(n-1) # x=x-(x**n-y)/(n*2^(n-1)) if n == 0: return 1 # x1 的 n1 次方 def pow1(x1, n1): if n1
原创
发布博客 2022.04.25 ·
9 阅读 ·
0 点赞 ·
0 评论

【算法题目】【动态规划】字符串 编辑距离

1 题目72. 编辑距离给你两个单词 word1 和 word2, 请返回将 word1 转换成 word2 所使用的最少操作数 。你可以对一个单词进行如下三种操作:插入一个字符删除一个字符替换一个字符 示例 1:输入:word1 = "horse", word2 = "ros"输出:3解释:horse -> rorse (将 'h' 替换为 'r')rorse -> rose (删除 'r')rose -> ros (删除 'e')示例 2:
原创
发布博客 2022.04.25 ·
181 阅读 ·
0 点赞 ·
0 评论

【算法题目】DFS BFS 动态规划 零钱兑换 Python

322. 零钱兑换给你一个整数数组 coins ,表示不同面额的硬币;以及一个整数 amount ,表示总金额。计算并返回可以凑成总金额所需的 最少的硬币个数 。如果没有任何一种硬币组合能组成总金额,返回 -1 。你可以认为每种硬币的数量是无限的。 示例 1:输入:coins = [1, 2, 5], amount = 11输出:3 解释:11 = 5 + 5 + 1示例 2:输入:coins = [2], amount = 3输出:-1示例 3:输入:coins =
原创
发布博客 2022.04.24 ·
228 阅读 ·
0 点赞 ·
0 评论

【算法题目】【奇怪的DFS】Python 括号生成

22. 括号生成数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合。 示例 1:输入:n = 3输出:["((()))","(()())","(())()","()(())","()()()"]示例 2:输入:n = 1输出:["()"]class Solution: def generateParenthesis(self, n: int) -> List[str]: def dfs(sol: str, l
原创
发布博客 2022.04.24 ·
476 阅读 ·
0 点赞 ·
0 评论

【算法题目】【DFS】Python 三数之和 DFS+剪枝 排序 + 双指针

DFS+剪枝:直接超时:class Solution: def threeSum(self, nums: List[int]) -> List[List[int]]: def dfs(start, sol: List): # print(sol) if start > n: # 结束条件, return if len(sol) >= 3: .
原创
发布博客 2022.04.24 ·
215 阅读 ·
0 点赞 ·
0 评论

【算法题目】【动态规划】Python 最长回文子串

文章目录题目解答1 动态规划 转为最长子字符串(执行超时 200ms)解答2 中心扩散 (1ms量级)解答3 动态规划 直接题目5. 最长回文子串给你一个字符串 s,找到 s 中最长的回文子串。示例 1:输入:s = "babad"输出:"bab"解释:"aba" 同样是符合题意的答案。示例 2:输入:s = "cbbd"输出:"bb"来源:力扣(LeetCode)链接:https://leetcode-cn.com/problems/longest-palindromic
原创
发布博客 2022.04.24 ·
600 阅读 ·
0 点赞 ·
0 评论

【算法题目】【动态规划】接雨水

1 巧妙的思路看到了一个巧妙的思路:python3class Solution: def trap(self, height: List[int]) -> int: ans = 0 h1 = 0 h2 = 0 for i in range(len(height)): h1 = max(h1,height[i]) h2 = max(h2,height[-i-1])
原创
发布博客 2022.04.23 ·
318 阅读 ·
0 点赞 ·
0 评论

【算法题目】【DFS】考试得分组合

员工参加考试,判断题X10(每个2分),单选题X10(每个4分),多选题X5(每个八分)。只能顺序作答,答对得分,答错不得分。答错三道,中止考试。输入考试结果分数,输出答题可能情况个数。1 需要dfs传递的参数才写成参数,能全局变量就尽量全局。2 这题传了开始位置、错误次数、分数,三者都是停止条件。3 搜索也分回溯或者不回溯。不回溯:python:def cal(score_in): def dfs(start, error, score): if start == n:
原创
发布博客 2022.04.22 ·
309 阅读 ·
0 点赞 ·
0 评论

【算法题目】【DFS】岛屿数量 岛屿中面积最大值

1岛屿数量题目很好理解,dfs来一套即可:(1)二维的,没考虑特殊情况;(2)对每个网格dfs,每次dfs往上下左右搜(3)grid是list,在python里面会是一个全局,第一次搜到记一次搜到了一块岛屿,后面的dfs都是为了扫清上下左右的岛屿;(4)dfs三要素:a 如何结束b 如何递归c 如何剪枝,这里不需要class Solution: def numIslands(self, grid: List[List[str]]) -> int: def d
原创
发布博客 2022.04.21 ·
161 阅读 ·
0 点赞 ·
0 评论

【算法题目】【DFS】组合,组合总和1,2

组合总和https://leetcode-cn.com/problems/combination-sum/comments/class Solution: def combinationSum(self, candidates: List[int], target: int) -> List[List[int]]: ans = [] temp = [] def recursion(idx, res): if id.
原创
发布博客 2022.04.20 ·
148 阅读 ·
0 点赞 ·
0 评论

【运维】ssh链接服务器 批量执行指令 ssh登录

安装插件:CentOS7 yum install -y epel-release yum install -y sshpassUBUNTUapt-get install sshpass在每个服务器进行docker pull:#!/bin/bashset -eHOST_PASSWORD=r00tmeIMAGE_NAME_LIST=("192.168.50.179:80/ai_algorithm_kevink8s/fire_smoke_detect:V1.0"
原创
发布博客 2022.04.19 ·
566 阅读 ·
0 点赞 ·
0 评论

【深度学习】CRNN 文字识别端对端模型 CTC损失

基于图像的序列识别是计算机视觉领域一个长期的研究课题。本文研究场景文本识别问题,这是图像序列识别中最重要和最具挑战性的任务之一。提出了一种新的神经网络结构,将特征提取、序列建模和转录集成到一个统一的框架中。与以往的场景文本识别系统相比,本文提出的体系结构具有四个独特的特性:(1)它是端到端可训练的,而现有的大多数算法都是单独训练和调优的。(2)它自然地处理任意长度的序列,不涉及字符分割或水平尺度归一化。(3)它不局限于任何预定义的词汇,在无词汇和基于词汇的场景文本识别任务中都取得了显著的性能。(4)它生成了
原创
发布博客 2022.04.18 ·
663 阅读 ·
0 点赞 ·
0 评论

【深度学习】优化函数:梯度下降、momentum、Ada grad、RMS Prop、Ada delta

视频:https://www.bilibili.com/video/BV1M64y187qX?spm_id_from=333.999.0.0文章目录梯度下降梯度下降
原创
发布博客 2022.04.17 ·
835 阅读 ·
0 点赞 ·
0 评论

【BIGO】 算法岗位面试

面试官真是太资深,只有再深入学习才行了:1 决策树、支持向量机、贝叶斯分类器 的数学知识;2 mse损失函数反向传播推导,与权重联系;3 项目事情;4 coding:C++ 内存泄漏解决;5 coding:python 一维maxpooling的时间复杂度优化;...
原创
发布博客 2022.04.16 ·
370 阅读 ·
0 点赞 ·
0 评论
加载更多