初中数学四十二个几何模型_模型 | 一文搞定初中数学9大重要几何模型(优选)...

文章来源:王通博初中数学,ID:wtbmaths 近日小初QQ群更新的部分内容如下 2020年中考数学真题分类汇编版本1(58讲Word) 2020年中考数学真题分类汇编版本2(21讲Word) 2020年全国中考数学真题试卷(258份Word) 江苏省2016-2020中考数学分类汇编(27讲Word) 山东省2018-2020中考数学分类汇编(20讲Word) 浙江省2018-2020中考数学分类汇编(17讲Word) 备战2021年上海中考数学真题模拟题分类汇编 2020中考数学微型培优专题课(6份PPT) 2020届中考数学总复习拉分题梳理(8份Word) 备战2021年中考数学专题练(13讲Word) 2020年中考数学冲刺难点突破 图形折叠问题 重难点突破:一元二次方程解法、判别式和韦达定理、整数根问题 折叠问题涉及6种题型梳理 极致经典:初中最值问题4大类28小类全梳理 重难点突破:初中动点问题7大类20小类全梳理 中考中相似三角形的常见模型及典型例题  解三角形的再认识 课件(共28张PPT) 三角形中角度计算相关的模型 初中数学图形运动解题技巧

b2e56d3451ffcd21d208687e827e4f55.png

重要几何模型1--半角模型

模型特点

倍长中线或类中线(与中点有关的线段)构造全等三角形

如图①:

(1)∠2=1/2∠AOB;(2)OA=OB。

如图②:

连接 FB,将△FOB 绕点 O 旋转至△FOA 的位置,连接 F′E、FE,可得△OEF′≌△OEF。

119fc4185bd32944edeb21c690500964.png

52c68168316ccc2855ad1079917f36c8.png

典型例题1

如图.在四边形ABCD中,∠B+∠ADC=180°,ABADEF分别是边BCCD延长线上的点,且∠EAF=1/2BAD,求证:EFBEFD

705adfadc70fbda74f3cbe9377357a24.png

【分析】在BE上截取BG,使BGDF,连接AG.根据SAA证明△ABG≌△ADF得到AGAF,∠BAG=∠DAF,根据∠EAF =1/2BAD,可知∠GAE=∠EAF,可证明△AEG≌△AEFEGEF,那么EFGEBEBGBEDF

【解析】证明:在BE上截取BG,使BGDF,连接AG

995410592236bfd2dce377d629bc2e01.png

∵∠B+∠ADC=180°,∠ADF+∠ADC=180°,

∴∠B=∠ADF

在△ABG和△ADF中,

易证△ABG≌△ADF(SAS),

∴∠BAG=∠DAFAGAF

∴∠BAG+∠EAD=∠DAF+∠EAD=∠EAF=1/2BAD

∴∠GAE=∠EAF

在△AEG和△AEF中,

易证△AEG≌△AEF(SAS).

EGEF

EGBEBG

EFBEFD

典型例题2

问题情境:已知,在等边△ABC中,∠BAC与∠ACB的角平分线交于点O,点MN分别在直线ACAB上,且∠MON=60°,猜想CMMNAN三者之间的数量关系.

方法感悟:小芳的思考过程是在CM上取一点,构造全等三角形,从而解决问题;

1b45f059ae475b06c8d029dd16f37654.png

小丽的思考过程是在AB取一点,构造全等三角形,从而解决问题;

问题解决:(1)如图1,MN分别在边ACAB上时,探索CMMNAN三者之间的数量关系,并证明;

(2)如图2,M在边AC上,点NBA的延长线上时,请你在图2中补全图形,标出相应字母,探索CMMNAN三者之间的数量关系,并证明.

【分析】(1)在AC上截取CDAN,连接OD,证明△CDO≌△ANO,根据全等三角形的性质得到ODON,∠COD=∠AON,证明△DMO≌△NMO,得到DMMN,结合图形证明结论;

(2)在AC延长线上截取CDAN,连接OD,仿照(1)的方法解答.

【解析】解:(1)CMAN+MN

理由如下:在AC上截取CDAN,连接OD

0bd4a4e7956c90b5854eedcbf547dad7.png

∵△ABC为等边三角形,∠BAC与∠ACB的角平分线交于点O

∴∠OAC=∠OCA=30°,

OAOC

在△CDO和△ANO中,

易证△CDO≌△ANO(SAS)

ODON,∠COD=∠AON

∵∠MON=60°,

∴∠COD+∠AOM=60°,

∵∠AOC=120°,

∴∠DOM=60°,

在△DMO和△NMO中,

易证△DMO≌△NMO

DMMN

CMCD+DMAN+MN

(2)补全图形如图2所示:

a157baef26836c01a216594354c5d6a0.png

CMMNAN

理由如下:在AC延长线上截取CDAN,连接OD

在△CDO和△ANO中,

易证CDO≌△ANO(SAS)

ODON,∠COD=∠AON

∴∠DOM=∠NOM

在△DMO和△NMO中,

易证DMO≌△NMO(SAS)

MNDM

CMDMCDMNAN

典型例题3

如图,在正方形ABCD中,MN分别是射线CB和射线DC上的动点,且始终∠MAN=45°.

(1)如图1,当点MN分别在线段BCDC上时,请直接写出线段BMMNDN之间的数量关系;

(2)如图2,当点MN分别在CBDC的延长线上时,(1)中的结论是否仍然成立,若成立,给予证明,若不成立,写出正确的结论,并证明;

(3)如图3,当点MN分别在CBDC的延长线上时,若CNCD=6,设BDAM的延长线交于点P,交ANQ,直接写出AQAP的长.

2bb9685f555b02dc4356ea41c20d5573.png

分析

c3f25a39e39e9421fa4a6b794c3d64e5.png425bba49b3a2502e4be218f77f612772.png

94ef6f50fffd4eeec512af9cf9b63edf.png

典型例题4-5

已知,正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CBDC(或它们的延长线)于点MNAHMN于点H

(1)如图①,当∠MAN绕点A旋转到BMDN时,请你直接写出AHAB的数量关系:AHAB

(2)如图②,当∠MAN绕点A旋转到BMDN时,(1)中发现的AHAB的数量关系还成立吗?如果不成立请写出理由,如果成立请证明;

(3)如图③,已知∠MAN=45°,AHMN于点H,且MH=2,NH=3,求AH的长.(可利用(2)得到的结论)

f2c79fcaacbf11f7c9be8831156e1dbf.png

【分析】(1)由三角形全等可以证明AHAB

(2)延长CBE,使BEDN,证明△AEM≌△ANM,能得到AHAB

(3)分别沿AMAN翻折△AMH和△ANH,得到△ABM和△AND,然后分别延长BMDN交于点C,得正方形ABCE,设AHx,则MCx﹣2,NCx﹣3,在Rt△MCN中,由勾股定理,解得x

43ad234bd441d87f7bb68dcd2aebc9c1.png2475b6e2c924ad34efa09854152b9187.png

典型例题6

(1)如图1,将∠EAF绕着正方形ABCD的顶点A顺时针旋转,∠EAF的两边交BCE,交CDF,连接EF.若∠EAF=45°,BEDF的长度是方程x2﹣5x+6=0的两根,请直接写出EF的长;

(2)如图2,将∠EAF绕着四边形ABCD的顶点A顺时针旋转,∠EAF的两边交CB的延长线于E,交DC的延长线于F,连接EF.若ABAD,∠ABC与∠ADC互补,∠EAFBAD,请直接写出EFDFBE之间的数量关系,并证明你的结论;

(3)在(2)的前提下,若BC=4,DC=7,CF=2,求△CEF的周长.

EF的长为:5;

②数量关系:EFDFBE

a128d61efdbfca5f6abdc76ba7c76844.png

【分析】(1)先证明△ABE≌△ADM,再证明△AEF≌△AMF,得到EFDF+BE即可;

(2)先证明△ADM≌△ABE,再证明△EAF≌△MAF,即可;

(3)直接计算△CEF的周长EF+BE+BC+CFDF+BC+CF=9+4+2=15.

d7f3e3cc92f18b3ee686cb56b6635cd3.png

32ed9f4f0fcc64e48e715512f31ce3e4.png

(3)由上面的结论知:DFEF+BE

BC=4,DC=7,CF=2,

DFCD+CF=9

∴△CEF的周长EF+BE+BC+CFDF+BC+CF=9+4+2=15.

即△CEF的周长为15.

EFDFBEFC+CDBE=5

②和(2)方法一样,EFDFBE

故答案为EFDFBE

d6282bc563263e69ddf41e7c9f568ec9.png

重要几何模型2--将军饮马模型

29127fcdb93ca7671314833a1529cf74.png

f6f48bfa7cc1dd58599f8f36ffe1e58e.png

e5d65545e00edddd4f50501cb9d52f97.png

bea3f71f55983f3c3a87ed4862226fc2.png

adbfff01b1ab0669a4c42ea57670a227.png

bffa84904c484a3bb67d8844b487eb9a.png

1557114a5b2ab225f53e29987961e176.png

df2e7812eeaa1b04d317847fe6ac0196.png

fdcb7a14e77b6e814e27bffcc78025d2.png

13833d10efda25e1e490ce5cbcaf5d16.png

a4814c497ea6e48c5b4897a8460cee51.png

df34f39677c574b3896a22798ac091ad.png

d201bd97e634ff59e4d57e6e1eb0747b.png

2763f14e7b8c74630abd00af4ac578b1.png

93d464535abe5983bffb87b00b6e008e.png

b812f0f671e729c3444546e4d82cbe17.png

d47a29b72ccb7355fe0044a7fed71041.png

f344065999c1fb8b5365b00660593636.png

550aae12d99464b8add06a325cddf257.png

56d4340403b22b9a96d1edd8d1d6a53e.png

e957cbeafbddc8d0e03f07a724d3a2a2.png

0dfaca83549169e06df4543f56418048.png

34b1c4d95ef52f3a61141bd118c84ab5.png

47f4af5520deca4f6ddd852882cc76c6.png

8e5eab0bb8f1a223be29bad35455ae6d.png

f35fa5db1947fe215786ab782e0d98d8.png

f2e18b5ce56dc71c97caa5a5bddd92e4.png

678c49a8b1ea87963b453869d1b655d8.png

e46e61b0a15b52a5a6ae4e74dd7df783.png

3accca482a92427dc9bed088bc347046.png

863d31bedca6426aefda4e3e19ae9d8e.png

5f42ccb6e7e575680cf83f17e6167724.png

56cc697777de319d516c6033f8a90990.png

0c799b873c965d603ed1d806306318d4.png

5abe29a22febc0c8f082c92a642641d5.png

f7461f1ca32040b3cd3d347cc724fba7.png

47b6584172b49d2eeb1188fddc8da540.png

bbd78dd3b0c29943c54082808e4fc762.png

9460d76cf6aca8ddaa9df18211d63211.png

e2cfba9637379672e32aca5f4c28b836.png

86012de37901643071c7f90612f78608.png

3ad786bf01aa1c26f9547ecdb76a933f.png

3699aa6b735cf97ddc30697a0c2186ea.png

735c4b24dc452bfc71ea51d907e109bb.png

fee15a0f14a0bc012e0f6b6fe342861c.png

ff8ef90a3010034c7380a05cf997ef8d.png

ea5bbbe9dd46fddcbab4b2be80c94602.png

71c3e5d198bad1fbeea3583711460756.png

6032af43a7b3e1521a8d978836b39a26.png

692880f8bdb8deb3c2e2e7e849fe7cbf.png

a01740717bf4211cdff70969722c2392.png

重要几何模型3--弦图模型

模型特点

弦图模型,包含两种模型:内弦图模型和外弦图模型.

(一)内弦图模型:如图,在正方形ABCD中,AE⊥BF于点E,BF⊥CG于点F,CG⊥DH于点G,DH⊥AE于点H,则有结论:△ABE≌△BCF≌△CDG≌△DAH.

e1a328ee5adc7b1e98c2797a99aa31f0.png

外弦图模型:如图,在正方形ABCD中,E,F,G,H分别是正方形ABCD各边上的点,且四边形EFGH是正方形,则有结论:△AHE≌△BEF≌△CFG≌△DGH.

2c5da1422299f9090783551979add578.png

弦图模型典例讲解

例题1. 如图,在△ABC中,∠ABC=90°,分别以AB,AC向外作正方形ABDE,ACFG,连接EG,若AB=12,BC=16,求△AEG的面积.

3d04f202e5f52a0b883c58bfe511e141.png

d3b1a679fcd3d42d14e770e34eef5dfb.png

变式练习>>>

1.如图,四边形ABCD是边长为4的正方形,点E在边AD上,连接CE,以CE为边作正方形CEFG,点D,F在直线CE的同侧,连接BF,若AE=1,求BF的长.

75256c73c12cc7b261800e8ea8111d31.png

a2c25e9aa251f97ff9b62c0fb426fda2.png

例题2. 如图,以Rt△ABC的斜边BC在△ABC同侧作正方形BCEF,该正方形的中心为点O,连接AO.若AB=4,AO=6倍根号2,求AC的长.

887e1fe1aace5831d3626f83bac07d4d.png

0b7d5509e8ffc24d9163f7505bc4bb87.png

变式练习>>>

2.如图,点A,B,C,D,E都在同一条直线上,四边形X,Y,Z都是正方形,若该图形总面积是m,正方形Y的面积是n,则图中阴影部分的面积是___________.

37fd81a69b127cdb67ec390b93bb5e68.png

9c75ac4b4d7787c2f7ebf261fa05b718.png

例题3. 如图,在△ABC中,∠BAC=45°,D为△ABC外一点,满足∠CBD=90°,BC=BD,若三角形ADC面积为4.5,求AC的长.

166d0de29c520a0d022b913907ebbd98.png

ba4362de133399369a8a7a640cc2bede.png

变式练习>>>

3.点P是正方形ABCD外一点,PB=10cm,△APB的面积是60cm2,△CPB的面积是30cm2.求正方形ABCD的面积.

fb5b7ab88208ef56a610cb511b280829.png

a9abf934e8e2c472ab1fc763efaf76f2.png

例题4. 在边长为10的正方形ABCD中,内接有6个大小相同的正方形,P、Q、M、N是落在大正方形边上的小正方形的顶点,如图所示,求这六个小正方形的面积.

a1428dff41bd8464033a0270c28b2360.png

d70d0ed7defd5e70f6e680144af50215.png

e73922c7ebd47a75432006dddfacb079.png

例题5. 如图,在等腰Rt△ACB和等腰Rt△DCE中,∠AXB=∠DCE=90°,连接AD,BE,点I在AD上,

(1)若IC⊥BE,求证:I为AD中点;

(2)若I为AD中点,求证:IC⊥BE

52edbbcfb336947669949ec33c244ce1.png

6eceb218c5e6a74c16b30bd57306edd0.png

例题6. 在平面直角坐标系中,直线l的解析式为y=2x+b,其与x轴交于点A,与y轴交于点B,在直线l移动的过程中,直线y=4上是否存在点P,使得△PAB是等腰直角三角形,若存在,请求出满足条件的所有点P的坐标,如不存在,请说明理由.

57a7cc28e30b39a2c71ce9eb8e762ccb.png

弦图模型小试牛刀

1.我国古代数学家赵爽利用弦图证明了勾股定理,这是著名的赵爽弦图(如图1).它是由四个全等的直角三角形拼成了内、外都是正方形的美丽图案.在弦图中(如图2),已知点O为正方形ABCD的对角线BD的中点,对角线BD分别交AHCF于点PQ.在正方形EFGHEHFG两边上分别取点MN,且MN经过点O,若MH=3MEBD=2MN=4根号5.则△APD的面积为多少.

50687f19fa61a41f739b2d32d1e23fa4.png

9705f1f324758856fef4c0b2c3f73d19.png

2.如图,在△ABC中,∠ACB=90°,分别以边ABAC向外作正方形ABDE和正方形ACFG,连接CEBGEG.(正方形的各边都相等,各角均为90°)

(1)判断CEBG的关系,并说明理由;

(2)若BC=3,AB=5,则AEG面积等于多少.

baae4698705ca6ed246a37b489320017.png

4b57a0029aead25058fe4535670870f2.png

51d164aec327240508bcef9c3f86c4ab.png

重要几何模型4--费马点模型

模型特点

费马点的定义:数学上称,到三角形3个顶点距离之和最小的点为费马点。

它是这样确定的:

1. 如果三角形有一个内角大于或等于120°,这个内角的顶点就是费马点;

2. 如果3个内角均小于120°,则在三角形内部对3边张角均为120°的点,是三角形的费马点。

费马点的性质:费马点有如下主要性质:

1.费马点到三角形三个顶点距离之和最小。

2.费马点连接三顶点所成的三夹角皆为120°。

费马点最小值快速求解:

费尔马问题告诉我们,存在这么一个点到三个定点的距离的和最小,解决问题的方法是运用旋转变换.

秘诀:以△ABC任意一边为边向外作等边三角形,这条边所对两顶点的距离即为最小值

7f88ecf151faa0cb9eb04c775492382c.png

费马点最值模型典例讲解

例题1. 已知:△ABC是锐角三角形,G是三角形内一点。∠AGC=∠AGB=∠BGC=120°.

求证:GA+GB+GC的值最小.

8a77bb5a1c9588e1ea642700dc2c2dad.png

变式练习>>>

1.如图,点P是三角形边长为1的等边内的任意一点,求PA+PB+PC的取值范围.

bd8c2314d03acc834bea038acf3c770d.png

f7a489ffc3a47f7393b2e3051d851ccb.png

e9533a2247451ab549436d4d549710ba.png注    本题旋转△AEB、△BEC也都可以,但都必须绕着定点旋转,读者不妨一试.

变式练习>>>

2.若P为锐角△ABC的费马点,且∠ABC=60°,PA=3,PC=4, 求PB的值.

7d179852304ce8c7b7ab58c7f4810ce6.png

例题3. 如图,矩形ABCD是一个长为1000米,宽为600米的货场,AD是入口,现拟在货场内建一个收费站P,在铁路线BC段上建一个发货站台H,设铺设公路APDP以及PH之长度和为l,求l的最小值.

215b5c0033fad390f38be9c746896c6d.png

c1721807bc920619f5bf26078478a4d2.png

变式练习>>>

3.如图,某货运场为一个矩形场地ABCD,其中AB=500米,AD=800米,顶点AD为两个出口,现在想在货运广场内建一个货物堆放平台P,在BC边上(含BC两点)开一个货物入口M,并修建三条专用车道PAPDPM.若修建每米专用车道的费用为10000元,当MP建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留整数)

119ba0ad669ad87ab79d012be430c235.png

8506b5b14182ebe7010194d9b8a5f0e2.png

例题4. 如图1,已知一次函数yx+3的图象与x轴、y轴分别交于AB两点,抛物线y=﹣x2+bx+cA

B两点,且与x轴交于另一点C

(1)求bc的值;

(2)如图1,点DAC的中点,点E在线段BD上,且BE=2ED,连接CE并延长交抛物线于点M,求点M的坐标;

(3)将直线AB绕点A按逆时针方向旋转15°后交y轴于点G,连接CG,如图2,P为△ACG内一点,连接PAPCPG,分别以APAG为边,在他们的左侧作等边△APR,等边△AGQ,连接QR

①求证:PGRQ

②求PA+PC+PG的最小值,并求出当PA+PC+PG取得最小值时点P的坐标.

6b53761df660a8640335da5ed7442fed.png

2015a9181cb137e9c8aeaa65c6d7735e.png

费马点最值模型小试牛刀

632b8833e4a3d1a80058fee68c76459d.png

2f54bfe2ca5d262b186e6372505ef57d.png

cf816e7813bb4d39675fad0f015d9a50.png

b4d751a1892c7da134cb49ea033b3bb7.png

fdde2ba57a1dbbfac78fdbeeee84e88b.png

ab114bd8c06126a1620884614836a3ce.png

重要几何模型5--隐圆模型

模型特点

1.触发隐圆模型的类型

(1)动点定长模型

254b8bec7ef04fd5d66b659936092a10.png

(2)直角圆周角模型

85c0a9a626a6e0ca1ec8a88348c5037f.png

(3)定弦定角模型

b89c25befae270bbdc2ce13329d1189a.png

(4)四点共圆模型①

62a4f79fcc0277d52350f883c3f61a8b.png

(5)四点共圆模型②

6fb92cd77e8ef47d6a8f6145bd94562f.png

2.圆中旋转最值问题

4a24acd6f29c6b6641c98a2f7b43ba1c.png

隐圆模型例题讲解

例题1. 如图,在边长为2的菱形ABCD中,∠A=60°,MAD边的中点,NAB边上的一动点,将△AMN沿MN所在直线翻折得到△A`MN,连接A`C,则A`C长度的最小值是__________.

57402118ac4d9506dfda7855a5acfbdf.png

【分析】考虑△AMN沿MN所在直线翻折得到△AMN,可得MA’=MA=1,所以A’轨迹是以M点为圆心,MA为半径的圆弧.连接CM,与圆的交点即为所求的A’,此时AC的值最小.构造直角△MHC,勾股定理求CM,再减去AM即可,答案为根号7减去1

89b31cc05004c98d16b52031a0a190ed.png

变式练习>>>

如图,在直角三形ABC中,

C=90°,AC=6,BC=8,点F在边AC上,并且CF=2,点E为边BC上的动点,将△CEF沿直线EF翻折,点C落在点P处,则点P到边AB距离的最小值是__________.

234cd214af7213df28e03a476f30b4ba.png

【分析】考虑到将△FCE沿EF翻折得到△FPE,可得P点轨迹是以F点为圆心,FC为半径的圆弧.过F点作FHAB,与圆的交点即为所求P点,此时点PAB的距离最小.由相似先求FH,再减去FP,即可得到PH.答案为1.2.

05b513b8bcb7fddd132ba147aaa518da.png

例题2. 如图,已知圆C的半径为3,圆外一定点O满足OC=5,点P为圆C上一动点,经过点O的直线l上有两点AB,且OA=OB,∠APB=90°,l不经过点C,则AB的最小值为________.

e211fd642a749c2067d07016c384bc13.png

e682eb218abc8f76ea16b23f06121777.png

变式练习>>>

2.如图,矩形ABCD

中,AB=4,BC=8,PQ分别是直线BCAB上的两个动点,AE=2,△AEQ沿EQ翻折形成△FEQ,连接PFPD,则PF+PD的最小值是_________.

15db19c553dfdd5697ccb9ba98096b8c.png

12fbe29c45fa8491f7f2e0cba94a0e5a.png

例题3. 如图,EF是正方形ABCD的边AD上的两个动点,满足AE=DF,连接CFBD于点G,连接BEAG于点H,若正方形边长为2,则线段DH长度的最小值是________. 

893549d08daf7e62edac11aeabf8be6d.png

d32de1969327aabdd9241d90d19ebd53.png

变式练习>>>

3.如图,Rt△ABC

中,ABBCAB=8,BC=4,P是△ABC内部的一个动点,且满足∠PAB=∠PBC,则线段CP长的最小值是_________.

e65f3fab72c8beb7f4eea5a43411c2df.png

8d4d5a506177b239e6a4b7c96d5ac84b.png

隐圆模型小试牛刀

a979a37dbc2a30f9feaa798f3f39ac7f.png

09722be207077815e2e6ac048c9cecdc.png

3c2f2f83ffeef7783c059208c20f5e84.png

ce53e381e6a64419a7ce7df7ec9aebd7.png

67e6cea784800aab23d08b959be37f84.png

重要几何模型6--胡不归模型

模型特点

在前面的最值问题中往往都是求某个线段最值或者形如PA+PB最值,除此之外我们还可能会遇上形如PA+kP这样的式子的最值,此类式子一般可以分为两类问题:(1)胡不归问题;(2)阿氏圆.

【故事介绍】

从前有个少年外出求学,某天不幸得知老父亲病危的消息,便立即赶路回家.根据“两点之间线段最短”,虽然从他此刻位置A到家B之间是一片砂石地,但他义无反顾踏上归途,当赶到家时,老人刚咽了气,小伙子追悔莫及失声痛哭.邻居告诉小伙子说,老人弥留之际不断念叨着“胡不归?胡不归?…”(“胡”同“何”)

而如果先沿着驿道AC先走一段,再走砂石地,会不会更早些到家?

d3b054f21caea6e1ecd7e8ba8bf0ed28.png

【模型建立】

如图,一动点P在直线MN外的运动速度为V1,在直线MN上运动的速度为V2,且V1<V2,AB为定点,点C在直线MN上,确定点C的位置使

的值最小.

a1cdd7afcb22e157141b953b986dff37.png

【问题分析】

88a2cb198b1b52b3358368e97d8cd51a.png

【问题解决】

构造射线AD使得sinDAN=kCH/AC=KCH=kAC

21357a243c06756f9c395220324cbc4b.png

将问题转化为求BC+CH最小值,过B点作BHADMN于点C,交ADH点,此时BC+CH取到最小值,即BC+kAC最小.

44050d94b63ba6eb569c0f7722e97d00.png

【模型总结】

在求形如“PA+kPB”的式子的最值问题中,关键是构造与kPB相等的线段,将“PA+kPB”型问题转化为“PA+PC”型.而这里的PB必须是一条方向不变的线段,方能构造定角利用三角函数得到kPB的等线段.

胡不归最值模型例题讲解

8b2ef390ad5d5e75c223e303dc8a8110.png

15dbc0c3f141657f7787ec7ae0dbffef.png

5d78e571adb194c3281863abae3fb43e.png

0d664820524600b2976f8deec7d7b531.png

a035a1900aca86408e42a71fc2e93159.png

120655e40c1f54490075e104104b204d.png

3e9a2bca6fe5bf55492bd6b6cac26d68.png

4708528297000bb735c2dd9c80fe50bd.png

13656fc832e4b92a33b03608f0597784.png

胡不归最值模型小试牛刀

4761bf874075ca2857ef187d0a354e11.png

56e80a3a8baaab58959575751237284f.png

5728f81d8d6efa65800c5e4b9323e873.png

a493745649fa530b1c044419ff1cfeb2.png

1be24e8736fea0c48c55e05f4e4c4812.png

b748cef1c9e9f8749f6d158aae4f558d.png

8682cc33c2db64efa41abea539989a45.png

a9d1f1129257446ec1f4e072e3318b8b.png

重要几何模型7--阿氏圆模型

模型特点

在前面的“胡不归”问题中,我们见识了“kPA+PB”最值问题,其中P点轨迹是直线,而当P点轨迹变为圆时,即通常我们所说的“阿氏圆”问题.

【模型来源】

“阿氏圆”又称为“阿波罗尼斯圆”,如下图,已知A、B两点,点P满足PA:PB=k(k≠1),则满足条件的所有的点P的轨迹构成的图形为圆.这个轨迹最早由古希腊数学家阿波罗尼斯发现,故称“阿氏圆”.

4106b6dc5bb222862ec596d3dc2a3d78.png

dc9c3f6ff91eecbc4eb2a72cf6e8f753.png

a5e232cd6f876a4509d0fa19b581c2e3.png

f86e038a36105250fedf617a99cb8d59.png

阿氏圆最值模型例题讲解

0203193adb9e385059f188f5139725de.png

d8796f811399f120eb91f6d353fad99f.png

aec8629bbc6aa0d6ffbbe94b18cdbcd6.png

cae3919724e6f01643ac12c2aed6034e.png

359202cfddae8b63eb4a735b8f1a5fb7.png

23e30a7b5f75b3679d7fa11b8b897736.png

9f51a481ecee40f5819f42671c399d3b.png

09c0368c3670ede88bb05cdbd4129f1d.png

e6af8670a102c537e11c5b846ec55696.png

683d5ea51549d6a9a50c8c405f9cd6d6.png

阿氏圆最值模型小试牛刀

0ca3fe63e1a9e98c81902e3be1e04e41.png

10eec2c85837f096390fcdabd38aaff0.png

c550b2fd6459033ca3a02274b99802ec.png

6f9336c466ea5a5779a54bb766c6b016.png

510964960ddcb852b9b71eb6cdf778fc.png

重要几何模型8--角含半角模型

模型特点

角含半角模型,顾名思义即一个角包含着它的一半大小的角。它主要包含:等腰直角三角形角含半角模型;正方形中角含半角模型两种类型。解决类似问题的常见办法主要有两种:旋转目标三角形法和翻折目标三角形法。

类型一:等腰直角三角形角含半角模型

1b5d0e080836a45c7feb1d5ce63daa68.png

类型二:正方形中角含半角模型

5b2f2039d7bb53f7a335f09f3ab247a4.png

角含半角模型例题讲解

44469d5437c258c3fa3afe17c52a2275.png

7f3feb3363cecb91a60be290762104c6.png

ca00083dc7b0c65050bfb424d22b114d.png

a724fdd8c4825f1860e6c7c300a9ca68.png

8896dfbba0d3a4ef2b9ab950faad1954.png

4017f6620d9280c054909a56277c1c9f.png

44f6ce8712e57f880fa1691dd3791072.png

角含半角模型小试牛刀

f518dbc70ffb927063747da162aeb868.png

b90c347c8e84d5cb946fac31809c17ee.png

c4df8465a261cb3e670db14c1b08c055.png

f9ff403f395bd32943a8779160a2323f.png

1c3a39a47ced3ff9688d39331f89d3f4.png

f3045988ad4af340498dd04610c82005.png

b249980e145da0dd42782f78e8e68fe7.png

0983f37d8b5d5d3385c58e1acec928ba.png

重要几何模型9--共顶点手拉手模型

模型特点

共顶点模型,亦称“手拉手模型”,是指两个顶角相等的等腰或者等边三角形的顶点重合,两个三角形的两条腰分别构成的两个三角形全等或者相似。寻找共顶点旋转模型的步骤如下:

(1)寻找公共的顶点

(2)列出两组相等的边或者对应成比例的边

(3)将两组相等的边分别分散到两个三角形中去,证明全等或相似即可。

4b26c52636c7cb2b7106ccf7915c24de.png

98fac2be0baa0e21de52926e8fedb57d.png

共顶点手拉手模型例题讲解

b736aa5e4a74aa5357d35a35c6f189a7.png

7cdf672f7f559194009bb7d6e1c5bd52.png

a1d0d7f8c632cc8b95421b8cda1fdc3f.png

6605d026bb38b33a8efe12bbcc1a1cba.png

81451187d463cf8d03e6e9e64f185378.png

b8e6a870d1fadd6fd93651916eaca520.png

c3ea406202a5a173fa4adb3dc03c23c2.png

433cd6851eb504c0ceacba21f87a7fea.png

角含半角模型小试牛刀

b0cf35327db05ad45749d1ceac0486d8.png

bcca31504305e1647afb30f5bb2065c8.png

2ba45b66dde3438a0affdc650d75bee8.png

9887ff2aa9b117d1b405caa365b844e3.png

f35e345cdfd081df5319fcf627374cc9.png

a8d4f3d7e809606370c516571242a746.png

99e607f53b3737714876c6bd65d7ebb5.png

文章来源:王通博初中数学(ID:wtbmaths);如存图片/音视频/作者/来源等使用或标注有误,请联系微信ABC-shuxue处理 最后,邀您进下方公号学习

9e24c45487b3dfd96620d1624bae020e.png

536ee094430ae318314a6a14a7ea1e31.gif 戳“ 阅读原文 ”,更有料!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值