matlab用幂法求特征值与特征向量_【第一章 线性代数】1.4矩阵的特征值和特征向量+矩阵的对角化二次型...

124dabed8278aee7fdb0323f9986dfe2.png

掌握目标:

1、掌握内积,正交,线性相关,线性无关的概念

2、掌握规范正交基,正交矩阵

3、掌握特征值特征向量的几何意义与算法

4、掌握相似矩阵,对角化,对角化的条件。对称矩阵一定可以对角化

5、二次型与矩阵的正定性,以及如何判断正定,可逆的又一种判断方法

1。向量的内积以及正交性

aff20dac7aee94171403eac9e9d12fe6.png

由这些定义加上我们中学在二维空间里面向量夹角的概念,我们推广到高维空间,也可以用来衡量高维空间中两个样本的相似度的一种度量(不同于欧式距离)

901f6007f785d52beba01b483f41ea15.png
柯西不等式,由(iii)+二次函数判别式

0dc44b957bce26959d869367c43d5c68.png
夹角,被证明cos在0到1之间

24ba41be1aaa240b4b40076670aa251c.png

22abe5cac58979d0815c5da84927b3e7.png

f446294fcfff059ece5814e1946fd342.png

则可逆的充要条件 :

4f1faabf8b77e94acd31ef6838e729e1.png

思考:

二维空间的规范正交基有哪些?

如何求出这些表示的系数?

,则其他也可以这么算出来。

正交矩阵(正交阵):

049693c431b291e202b8be77f3c216b2.png

32e7e067e84dab05d6a6df171cea1ea3.png

361c0d6afd62cfd66e06583d577415b5.png

2。方阵的特征值与特征向量

4f821748951805835a0cb776cc45d052.png

特征方程:

b0e8afb05e81c360489b903d066f3bbb.png

特征多项式:

9d0d16225d779a86f25d47211f7edb80.png

ceff5149741d8520f2442df69706ce93.png
用韦达定理推出(ii)

0c5109b3c49f78ecb316b68985bfabb0.png

ca5cf6a8db8f91831c53362971ccb081.png

45787fb901d71c5cff212228e20fbefb.png

问题:只解出两个特征向量呢?因为有重根!

1589f3b589a01ae6133371469a7fb689.png

7db87f6313713000884f220677daad81.png
证明例8的(1)

8cce34c7328a7feda839c3b66e527324.png

例9解:

,将1,-1,2代入得到结果即是答案。

3。方阵对角化

相似矩阵:

ce4714e22a014d9669d0314f056f0d3b.png

7c25a6a970d0f8142bc53b66644912cb.png
特征向量不一定相同呀

ccddaf134f5130ae510b07e13696e5ec.png
用对角阵求特征值来推导

定理3的证明:

矩阵的对角化:

be9ee1a197134b6bf7c03c657c6f81fd.png
必要性由上图的假设已经找到可逆矩阵p,充分性由以下证明得到,请看下面

定理4 充分性证明:

3e04fd0ab9166e49a596f7dea1d7ff4c.png

b7fd72c33c11d8473c1b53feb6a54c62.png

对称矩阵的对角化:

6d1d8838987833a9f1eebc6bfad4021a.png

83231ba40cced6ddca376b80b5ed447f.png

669467f4b1f5d95eee09be624be43b56.png

152e26bfb6f6b8aae4c128515d176ec0.png

75e6a28ac2f7c176a6af24a2633b9593.png
向量的正交化参照的是施密特规范正交化

4。二次型和矩阵的正定性

179ac8b0b3120dbfa9559fd76283b306.png

20f8f7255e398837c4015d03c7f33e3c.png
二次型

c1dbe3ac246a73b7ccf56ce3bd6e4a71.png
标准型和规范型

28171842274075429ab0d2935d2c055b.png

52e48323b7099f1dbb2d73130b5a74b8.png

2337f230acbc75ed9f70f5d11d77d1f1.png

8324a52419d64b445e2c6e35ca92744c.png
如果A是对角矩阵该有多好,就一下子就是标准型甚至规范性了

8c18467150c3f7a5af266e5365e46788.png

ccbd2ea12084c814241108a40d4affb3.png

4532b0a0ec0568ad66f9af3d030c4e0d.png

9ade7cf5ca8f88c339a9a93d1fd0f685.png

f973e6542cd05a8bcbf325355b6f223e.png

【作业】

打卡作业:

1、

9da0fc2b477bdfca0e73841894b0eb5e.png

01f555352b100d8aecc0e62a6ae57bcc.png

2、求下列矩阵的特征值和特征向量

f2988668bd8f19fa18677e8d1ba99351.png

b4ceecb73c08b97123354862e21d4089.png

3、

7bf012b2f35f50fd30b0be355f75af0d.png

4、

d6b4617be83d175cea224e94331fddca.png

5ea794455b08e95122958bf450610986.png

5、

64750e4b0d7a82a818bfbe48a6a2749e.png

6、总结现在为止矩阵可逆的充要条件

dc450e3e70d77782b3e03e299857e398.png

7、学习Numpy求解特征值特征向量

'''特征值和特征向量'''
# 定义矩阵
A = np.mat("1 4 2; 0 -3 4; 0 4 3")
print(A)
# [[ 1  4  2]
#  [ 0 -3  4]
#  [ 0  4  3]]

b = np.array([0, 8, -9])

# 线性方程组求解
x = np.linalg.solve(A, b)
print(x)
# [ 9.2 -2.4  0.2]

# 返回矩阵的特征值
y = np.linalg.eigvals(A)
print(y)
# [ 1. -5.  5.]

# 返回矩阵的特征值和特征向量的元组
(w, v) = np.linalg.eig(A)
print(w)
print(v)
# [ 1. -5.  5.]
# [[ 1.          0.40824829 -0.66666667]
#  [ 0.         -0.81649658 -0.33333333]
#  [ 0.          0.40824829 -0.66666667]]
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值