python astype category_Python知识点整理(持续更新)

本文介绍了Python pandas库中处理数据的一些关键知识点,包括pd.to_numeric的用法,时间转换,文本数据转整数分类编码,列名重命名,删除缺失值,异常值处理,以及如何删除或选取含有特定数值的行或列。通过实例讲解了如何进行标签编码、哑变量编码以及数据清洗中的常见操作。
摘要由CSDN通过智能技术生成

5648a42b7db36c9500e495d0d2bbbd10.png

9本人Python小白一枚,为了可以快速的学习的Python,先通过做项目的过程中逐步积累知识,期望能慢慢形成自己的体系,下面是一些做项目之前自己学习的Python的基础知识。

4b8949b2dbbc060516682090175ec171.png

6b54ba27eb04addac0d8a86739d21f41.png

d6c7035f5b25d251ce765c8f6ba26c1b.png

一、知识点1——pd.to_numeric

to_numeric:将参数转换为数值类型。根据提供的数据,默认返回的dtype是float64或int64。使用downcast参数获取其他dtype

参数(arg)可以为:列表(list),元组( tuple),一维数组( 1-d array或者Series)

errors:{‘raise’,‘ignore’,‘coerce’},errors参数包含3种值,

如果errors=‘raise’,则无效的解析将引发异常

如果errors=‘ignore’,则无效的解析将返回输入

如果errors=‘coerce’,则无效的解析将会设置为NAN

例子1:

s = pd.Series(['1.0', '2', -3])
pd.to_numeric(s)

bf7bd8d5c9cfbad1c9477316928f3537.png
pd.to_numeric(s, downcast='float')

f47a2dfedb8cdcd1a3aacdc1d910f929.png
pd.to_numeric(s, downcast='signed')

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值