- 博客(41)
- 收藏
- 关注
原创 C#中的Timers.Timer使用用法及常见报错
System.Timers.Timer是一个基于服务器的计时器,它可以在应用程序中定期触发事件。这个计时器特别适合用于多线程环境,并且不应该与用户界面(UI)直接交互。在ASP.NET中,通常使用System.Timers.Timer来处理周期性的任务。
2025-01-19 18:50:42
1093
原创 C#中的事件
很多程序会有一个共同的需求,即当一个特定的程序事件发生时,程序的其他部分可以得到该事件已经发生的通知。事件基本上说是一个用户操作,如按键、点击、鼠标移动等等,或者是一些提示信息,如系统生成的通知。应用程序需要在事件发生时响应事件。例如,点击按钮,显示消息框。事件是一个发布-订阅模型,发布者定义了一系列程序的其他部分可能感兴趣的事件,其他类就可以注册,以便在这些事件发生时收到发布者的通知。关于事件的重要概念:**发布器:**一个包含事件和委托定义的对象。事件和委托之间的联系也定义在这个对象中。
2024-10-28 18:06:39
1123
原创 C#中的委托、匿名方法、Lambda、Action和Func
委托是存有对某个方法的引用的一种。定义方法的类型,可以把一个方法当作另一方法的参数。所有的委托(Delegate)都派生自 System.Delegate 类。委托声明决定了可由该委托引用的方法。
2024-10-25 08:33:29
1053
原创 WPF-UI布局
例如:一个总高度为200px的Grid,它包含5行,其中两行采用绝对值50px,其它三行分别为1*,2*,2*。Canvas布局就像在画布上画控件一样,Winform开发时外面通过设置控件的Left和Top等属性来确定控件在窗体上的位置,而WPF的控件没有Left和Top等属性,因此当控件放在Canvas会添加位置信息。StackPanel可以把内部元素在纵向或横向紧凑排列,当排在前面的元素抽掉之后,排在它后面的元素会整体向前移动、补占原有元素的空间。
2024-06-09 18:28:29
1551
2
原创 C#中的扩展方法
C#中的扩展方法是一种非常实用的语言特性,它允许我们在不修改原有类定义的情况下,为其添加新的方法。这种机制极大地增强了代码的灵活性和可维护性,特别是在处理第三方库或无法直接修改源码的类时尤为有用。下面,我将详细阐述C#扩展方法的概念、使用场景、语法规范,并通过实例代码和详尽注释来说明如何创建和调用扩展方法。
2024-04-26 15:08:11
449
原创 Pytorch转onnx
这份文档中最重要的开头的这个算子变更表格。表格的第一列是算子名,第二列是该算子发生变动的算子集版本号,也就是我们之前在torch.onnx.export中提到的opset_version表示的算子集版本号。通过查看算子第一次发生变动的版本号,我们可以知道某个算子是从哪个版本开始支持的;通过查看某算子小于等于opset_version的第一个改动记录,我们可以知道当前算子集版本中该算子的定义规则。ONNX 算子的定义情况,都可以在官方的。
2024-04-06 20:57:09
523
1
原创 hacon中深度图转点云图
GenParamName参数名中有很多设置,比较常见的是当GenParamName:=[‘color’,‘lut’]时,GenParamValue:=[‘color1’,‘coord_z’]时,意思时在color为第一种颜色,在Z轴设置渐变。支持’dxf’, ‘obj’, ‘off’, ‘om3’, ‘ply’, ‘ply_binary’, ‘stl’, ‘stl_ascii’, ‘stl_binary’作用:将图像中的3D点转换为3D对象模型z。Z:用三维点的z坐标和三维点ROI区域。
2024-03-10 23:34:07
2071
原创 halcon中的2D测量-椭圆
二维测量指的是测量二维几何图形的参数,例如圆、椭圆、圆弧、矩形的相关参数。这里的参数对圆来说可以是半径;椭圆可以是长半轴、短半轴;矩形则包括宽和高。
2024-02-26 22:31:32
1025
1
原创 halcon中的一维测量
本文根据halcon引脚测量案例,讲解一维测量的流程以及gen_measure_rectangle2、gen_measure_arc、measure_pairs、measure_pos、translate_measure相关测量算子的使用
2024-02-25 01:35:12
1614
1
原创 halcon学习-blob分析统计木材个数
本文通过使用矩形结构开运算,圆形结构腐蚀运算,统计非连通区域个数并合并非连通区域对木材进行blob统计分析
2024-01-11 22:38:41
905
原创 halcon算子学习-文件及文件夹相关操作算子
open_file,fwrite_string,fread_line,get_system,list_files
2023-11-26 16:24:26
1015
原创 halcon算子学习-图像形态学
本文是halcon图像形态学算子学习,包括开运算:先腐蚀后膨胀的过程称为开运算,作用:去除孤立的小点,毛刺,消除小物体,平滑较大物体边界,同时不改变其面积.闭运算:先膨胀后腐蚀的过程是闭运算。作用:填充物体内细小的空洞,连接临近物体,平滑边界,同时不改变其面积。腐蚀:消除物体边界点,使边界向内部收缩的过程,把小于结构元素的物体去除掉.膨胀:对边界点进行扩充,填充空洞,使边界向外部扩张的过程。
2023-11-25 21:13:16
664
原创 【Linux学习1】
目录是文件存放的一个虚拟盒子,其实只是一个名称,类似一个盒子里放了很多文件,每个盒子都有一个名字就是目录名。Linux 目录的结构与Windows有很大的不同,首先Linux没有“盘符”的概念,即不存在所谓的C盘、D盘,只有一个顶级目录,称为根目录。从根目录开始连续写,称为绝对目录,比如/home/tom。Windows系统有多个顶级目录,即各个盘符,Windows系统表示层次关系使用的是。,需要注意的是,在开头出现正斜杠即为顶级目录,在后面出现的。④ ~ 表示当前用户所在的home目录。
2023-03-26 23:20:31
172
原创 【python】pandas中dataframe连接及数组分割及合并
本文主要学习pandas中dataframe的连接,如concat函数、merge函数、join函数,并区分了内连接、外连接、左连接、右连接;以及numpy中的数组分割及合并,学习vstack()、hstack()、vsplit()、hsplit()、spli()等函数。
2022-10-21 22:58:38
5798
原创 【机器学习】特征工程中常见的特征编码
本文主要学习机器学习中的特征编码,类别型编码方式:独热编码、序列编码、标签编码、频数编码、均值编码;数值型编码方式:取整、缩放、分箱。
2022-10-15 15:43:42
4261
原创 【OpenCV】图像滤波
本文主要学习图像的相关滤波,cv2.boxFilter,cv2.blur,cv2.Guassianblur,cv2.medianBlur,cv2.bilateralFilter
2022-10-12 21:59:25
1080
原创 【opencv】常见的绘图函数
本文介绍opencv常见的绘图函数,如cv2.line(),cv2.rectangle(),cv2.circle(),cv2.ellipse(),cv2.polylines(),cv2.putText(),通过解释主要参数并通过相关代码逐步掌握这些函数。
2022-10-05 23:14:42
662
原创 【mysql报错】C:\WINDOWS\system32>net stop mysql 服务名无效。 请键入 NET HELPMSG 2185 以获得更多的帮助。
可以看到我的mysql名字为:MySQL80。首先点击你的windows,然后在搜索框输入。会出现服务,然后在找到你的sql名字。接下来进行相关操作即可。
2022-09-26 18:42:06
4497
原创 【 Matplotlib绘图】
Matplotlib是Python中最常用的可视化工具之一,可以非常方便地创建海量类型的2D图表和一些基本的3D图表,可根据数据集(DataFrame,Series)自行定义x,y轴,绘制图形(线形图,柱状图,直方图,密度图,散布图等等),能够满足大部分需要。Matplotlib最早是为了可视化癫痫病人的脑皮层电图相关的信号而研发,因为在函数的设计上参考了MATLAB,所以叫做Matplotlib。官方文档:Matplotlib中最基础的模块是pyplot。
2022-09-24 15:46:06
5013
原创 【OpenCV】学习笔记1-图像基础知识以及OpenCV基本操作
我们可以用一个二维函数f(x,y)f(x,y)f(x,y)来定义一张图像,其中(x,y)(x,y)(x,y)是空间坐标,任意一对空间坐标(x,y)(x,y)(x,y)处的幅值fff称为图像在该点的强度或灰度。特别地,当x,yx,yx,y和灰度值fff都是有限的离散值时,我们称该图像为数字图像。
2022-09-23 22:36:35
984
原创 Python爬虫-Beautiful Soup库学习
Beautiful Soup 是一个强大的基于Python语言的XML和HTML解析库,它提供了一些简单的函数来处理导航、搜索、修改分析树等功能,结合requests库可以写出简洁的爬虫代码。
2022-09-03 15:53:40
1526
原创 Python爬虫-XPath学习
虽然XPath代码比正则简单,但是遇到复杂饿节点写起来还是很肥脑子,接下来我们使用谷歌浏览器获取XPath代码,现在我们进入百度首页(https://www.baidu.com),然后右键点击检测按钮即可查看HTML代码,假设要爬取”更多“两字可参考下图操作。常见的还有选取子节点和父节点,参考XPath的基本语法规则修改即可。“//”开头的Xpath规则可以选取所有符合要求的节点,如果使用“//*”则选取整个HTML文档的所有节点,接下来选取html文件中所有的节点以及节点,并输出选取节点的名称。.....
2022-08-25 23:46:36
548
原创 Python爬虫-requests库学习
如果要设置中文的Cookie则需要quote和unquote函数进行编码和解码。如果需要爬取很多数据这时可以考虑使用代理,他的原理就是使用第三方机器发送请求,对于服务器而言就是不同的客户端发送,在requests中只需指定proxies参数即可,该参数为字典类型,需要注意的是使用http还是https协议。有很多网站,在访问其Web资源时必须要设置一些HTTP请求头,比如User-agent、Host等,否则无法访问其资源,这是可以利用get方法中的headers参数,该参数是一个字典类型的值,即含有。..
2022-08-16 14:25:05
760
原创 【西瓜书+南瓜书】学习笔记3
决策树是一种树形结构,其中每个内部节点表示一个属性上的判断,每个分支代表一个判断结果的输出,最后每个叶节点代表一种分类结果。
2022-07-22 00:15:01
295
原创 【西瓜书+南瓜书】学习笔记2
“线性回归”(linearregression)试图学得一个线性模型以尽可能准确地预测实值输出标记。性上的取值,线性模型(linearmodel)试图学得一个通过属性的线性组合来进行。它的核心思想是同类样本的投影点尽可能的近,异类样本的投影点尽可能远。上面使用得是对数几率函数,需要注意的是映射函数是单调可微的。在线性回归模型下套用一个映射函数实现分类功能。数据集D只有一个属性,其线性回归可写为。个属性,其线性回归可写为。-使用极大似然函数估计。...
2022-07-18 21:16:51
408
原创 【西瓜书+南瓜书】学习笔记1
通常通过实验测试来对学习器的泛化误差进行评估模型的优劣,但是泛化误差在实际情况中难以计算,因此取 ** 测试误差 **作为 ** 泛化误差 ** 的近似。将数据集划分为两个互斥的集合,其中一个集合作为训练集 ,另一个作为测试集,两个集合没有交集。这里把数据集划分为10个互斥的子集,然后每9个子集进行训练,一个进行测试,重复10次,把10次结果算平均。给定样本为m的数据集D,每次有放回的随机从数据集D取一个样本,重复m次,即生成m个样本的训练数据集,剩下没有采取到的数据为测试集。错误率:分类错误的样本数占总
2022-07-12 21:02:26
204
原创 【图像分类】GoogLeNet详解
在2014年的图像识别比赛中,由Google团体提出的GooLeNet网络结构大放异彩,字母的大写L为了纪念LeNet,GooLeNet吸收了NiN中串联的思想,其论文重点是解决了什么样大的卷积核最合适的问题。在GooLeNet中,基本的卷积块被称为 InceptionInceptionInception 块,这可能来源电《盗梦空间》(InceptionInceptionInception )中的一句电影台词"We need to go deeper"(我们需要走得更深)。下图为为GooLeNet的框架图
2022-06-04 13:55:55
1509
2
原创 【目标检测】Fast R-CNN详解
Fast R-CNN是作者Ross Girshick继R-CNN后的又一力作。同样使用VGG16作为网络的骨架,在训练速度比R-CNN快了近9倍,测试速度快了213倍,在Pascal VOC数据集上accuracy从62%提升至66%,它解决了重复卷积计算和固定输入尺度的问题。Fast R-CNN 的总体架构如下图所示。顾名思义,Fast R-CNN 相对于R-CNN 的一个重要的优势就是速度快,以下是它的主要步骤:1. 利用SS算法(选择性搜索)生成1k-2k的候选区域。2. 使用深度网络(VGG
2022-06-02 10:50:23
3177
原创 VGG网络详解以及实战
前言VGG 在2014年由牛津大学的视觉几何组 (Visual Geometry Group)提出,主要工作是证明了增加网络的深度能够在一定程度上影响网络最终的性能。VGG16相比AlexNet的一个创新之处是采取连续的几个3x3的卷积核代替AlexNet中的较大卷积核。这样可以减少训练中的参数并且能够保证具有相同的感受野。VGG网络结构下面为VGG的网络结构图,我们以VGG16为例。在这里我们发现VGG16总体上有13个卷积层和3个全连接层。通常我们把13个卷积层分为5个卷积块(VGG块)。以
2022-05-30 18:23:16
3729
原创 深度学习——利用模型块快速搭建复杂网络
利用模型块快速搭建复杂网络上一节中我们介绍了怎样定义PyTorch的模型,其中给出的示例都是用torch.nn中的层来完成的。这种定义方式易于理解,在实际场景下不一定利于使用。当模型的深度非常大时候,使用Sequential定义模型结构需要向其中添加几百行代码,使用起来不甚方便。对于大部分模型结构(比如ResNet、DenseNet等),我们仔细观察就会发现,虽然模型有很多层, 但是其中有很多重复出现的结构。考虑到每一层有其输入和输出,若干层串联成的”模块“也有其输入和输出,如果我们能将这些重复出现的层
2022-05-25 13:44:28
615
原创 PyTorch修改模型结构
除了自己构建PyTorch模型外,还有另一种应用场景:我们已经有一个现成的模型,但该模型中的部分结构不符合我们的要求,为了使用模型,我们需要对模型结构进行必要的修改。随着深度学习的发展和PyTorch越来越广泛的使用,有越来越多的开源模型可以供我们使用,很多时候我们也不必从头开始构建模型。因此,掌握如何修改PyTorch模型就显得尤为重要。本节我们就来探索这一问题。经过本节的学习,你将收获:如何在已有模型的基础上:**·**修改模型若干层**·**添加额外输入**·**添加
2022-05-24 23:27:01
2312
原创 PyTorch模型定义的三种方式
PyTorch模型定义的方式模型在深度学习中扮演着重要的角色,好的模型极大地促进了深度学习的发展进步,比如CNN的提出解决了图像、视频处理中的诸多问题,RNN/LSTM模型解决了序列数据处理的问题,GNN在图模型上发挥着重要的作用。当我们在向他人介绍一项深度学习工作的时候,对方可能首先要问的就是使用了哪些模型。这里我们来更为系统地学习PyTorch中模型定义的方式,本节的学习将为后续灵活构建自己的模型打下坚实的基础。经过本节的学习,你将收获:**·**熟悉PyTorch中模型定义的三种方式**·*
2022-05-24 22:43:44
345
原创 深度学习——图像增广
图像增广图像增广是对训练图像做一系列随机改变,来产生相似但又不同的训练样本,从而扩大训练数据集的规模。我们深知大型数据集是成功应用深度神经网络的先决条件。应用图像增广能够随机改变训练样本可以减小模型对某些属性的依赖,从而提高模型的泛化能力。例如我们可以对一张图片实现裁剪、调整亮度、颜色等等。常用的图像增广方法先导入相关得包和图片%matplotlib inlineimport torchimport torchvisionfrom torch import nnfrom d2l import
2022-05-23 16:47:00
3891
原创 基于FashionMNIST时装分类的CNN实现
基础实战——FashionMNIST时装分类为了把PyTorch入门知识串起来,现在通过一个基础的实战案例了解。我们这里的任务是对10类的“时装”图像进行分类,使用FashionMNIST数据集。上图了FashionMNIST 中数据的样例训练图,其中每张小图训练一个样本图像单通道黑白图像,大小为28*28pixel,分属10个类别。首先进口必需的包import osimport numpy as npimport pandas as pdimport torchimport torch
2022-05-21 21:24:08
1082
原创 深度学习——模型的初始化
在深度学习模型的训练中,权重的初始值极为重要。一个好的权重值,会使模型收敛速度提高,使模型准确率更精确,因此本文主要介绍torch.nn.init以及如何使用
2022-05-20 16:20:43
4904
原创 深度学习——模型构建
模型构建1 神经网络的构造PyTorch中神经网络构造一般是基于 Module 类的模型来完成的,它让模型构造更加灵活。Module 类是 nn 模块里提供的一个模型构造类,是所有神经⽹网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承 Module 类构造多层感知机。这里定义的 MLP 类重载了 Module 类的 init 函数和 forward 函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。import torchfrom torch import nnc
2022-05-20 08:40:47
2908
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人