假设a是带状矩阵,则对x求解方程a x = b。
矩阵a使用矩阵对角线有序形式存储在ab中:
ab[u + i - j, j] == a[i,j]
ab的示例(a的形状为(6,6),u = 1,l = 2):
* a01 a12 a23 a34 a45
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 *
a20 a31 a42 a53 * *
参数:
(l, u):(integer, integer)非零上下对角行数
ab:(l + u + 1, M) array_like带状矩阵
b:(M,) 或 (M, K) array_likeRight-hand侧
overwrite_ab:bool, 可选参数丢弃ab中的数据(可能会提高性能)
overwrite_b:bool, 可选参数丢弃b中的数据(可能会提高性能)
check_finite:bool, 可选参数是否检查输入矩阵仅包含有限数。禁用可能会提高性能,但是如果输入中确实包含无穷大或NaN,则会导致问题(崩溃,终止)。
返回值:
x:(M,)或(M,K)ndarray系统的解a x = b。返回的形状取决于b的形状。
例子:
求解带状系统a x = b,其中:
[5 2 -1 0 0] [0]
[1 4 2 -1 0] [1]
a = [0 1 3 2 -1] b = [2]
[0 0 1 2 2] [2]
[0 0 0 1 1] [3]
在主对角线以下(l = 1)有一个非零对角线,在主对角线上方有两个非零对角线(u = 2)。矩阵的对角带形式为:
[* * -1 -1 -1]
ab = [* 2 2 2 2]
[5 4 3 2 1]
[1 1 1 1 *]
>>> from scipy.linalg import solve_banded
>>> ab = np.array([[0, 0, -1, -1, -1],
... [0, 2, 2, 2, 2],
... [5, 4, 3, 2, 1],
... [1, 1, 1, 1, 0]])
>>> b = np.array([0, 1, 2, 2, 3])
>>> x = solve_banded((1, 2), ab, b)
>>> x
array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ])