python scipy库函数solve用法_python scipy linalg.solve_banded用法及代码示例

假设a是带状矩阵,则对x求解方程a x = b。

矩阵a使用矩阵对角线有序形式存储在ab中:

ab[u + i - j, j] == a[i,j]

ab的示例(a的形状为(6,6),u = 1,l = 2):

* a01 a12 a23 a34 a45

a00 a11 a22 a33 a44 a55

a10 a21 a32 a43 a54 *

a20 a31 a42 a53 * *

参数:

(l, u):(integer, integer)非零上下对角行数

ab:(l + u + 1, M) array_like带状矩阵

b:(M,) 或 (M, K) array_likeRight-hand侧

overwrite_ab:bool, 可选参数丢弃ab中的数据(可能会提高性能)

overwrite_b:bool, 可选参数丢弃b中的数据(可能会提高性能)

check_finite:bool, 可选参数是否检查输入矩阵仅包含有限数。禁用可能会提高性能,但是如果输入中确实包含无穷大或NaN,则会导致问题(崩溃,终止)。

返回值:

x:(M,)或(M,K)ndarray系统的解a x = b。返回的形状取决于b的形状。

例子:

求解带状系统a x = b,其中:

[5 2 -1 0 0] [0]

[1 4 2 -1 0] [1]

a = [0 1 3 2 -1] b = [2]

[0 0 1 2 2] [2]

[0 0 0 1 1] [3]

在主对角线以下(l = 1)有一个非零对角线,在主对角线上方有两个非零对角线(u = 2)。矩阵的对角带形式为:

[* * -1 -1 -1]

ab = [* 2 2 2 2]

[5 4 3 2 1]

[1 1 1 1 *]

>>> from scipy.linalg import solve_banded

>>> ab = np.array([[0, 0, -1, -1, -1],

... [0, 2, 2, 2, 2],

... [5, 4, 3, 2, 1],

... [1, 1, 1, 1, 0]])

>>> b = np.array([0, 1, 2, 2, 3])

>>> x = solve_banded((1, 2), ab, b)

>>> x

array([-2.37288136, 3.93220339, -4. , 4.3559322 , -1.3559322 ])

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值