以下是以Windows系统下实践为例:
一、造假数据,模拟场景
1.制造数据的存储过程:
DELIMITER //
CREATE PROCEDURE p1(num int)
BEGIN
DECLARE v INT;
SET v = 1;
WHILE v <= num DO
INSERT INTO user(username,password,gender,age,createtime) VALUES (concat("user",v),md5(v),round(rand()),round(rand()*100),now());
SET v = v + 1;
END WHILE;
END; //
2.调用存储过程
选择数据库test1,创建表user,建表语句如下:
DROP TABLE IF EXISTS `user`;
CREATE TABLE `user` (
`id` int(11) NOT NULL AUTO_INCREMENT,
`username` varchar(20) NOT NULL,
`age` tinyint(3) NOT NULL,
`password` char(32) NOT NULL,
`gender` enum('0','1') DEFAULT NULL,
`createtime` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
PRIMARY KEY (`id`)
) ENGINE=MyISAM DEFAULT CHARSET=utf8;
调用存储过程:call p1(1000000);
3.分析user表结构
二、慢查询日志的开启
1.命令行下查看mysql慢查询的配置信息:
show variables like '%slow%';
2.若slow_query_log为OFF,则需要我们开启慢查询日志
开启方法:修改my.ini文件,在文件最后加上以下内容:
slow_query_log=on (开启慢查询日志)
long_query_time=0.2 (设置慢查询时间为0.2秒)
3.开启之后可通过命令查看慢查询配置
show variables like '%slow%';
show variables like '%long%';
三、分析sql语句,验证索引带来的查询速度的提升
1.执行一条慢查询sql语句
select * from user where username = ‘user999990’;
记录下该语句的执行时间,若超过了我们设置的慢查询时间,则会记录在日志里。
2.分析慢查询的sql语句
explain select * from user where username = ‘user999990’;
3.为username添加普通索引
alter table user add index(username);
查看:show index from user;
4.再次执行刚才的查询语句
select * from user where username = ‘user999990’;
记录本次查询所用的时间,验证是否加上索引加快了查询速度。
四、索引并非建的越多越好
索引的代价:
磁盘占用
对dml(update delete insert)语句的效率影响
验证加上索引之后的更新语句执行时间:
update user set username=’a’ where id=1000010;
记录执行时间
将索引删除再次执行该sql语句,记录执行时间,比较有无索引时更新语句哪个更快。
五.sql语句使用到索引的情况
1.较频繁的作为查询条件字段应该创建索引
2.唯一性太差的字段不适合单独创建索引,即使频繁作为查询条件
3.更新非常频繁的字段不适合创建索引
4.不会出现在WHERE子句中字段不该创建索
5.对于使用like的查询,查询如果是’%aaa’不会使用到索引’aaa%’会使用到索引。
6.如果列类型是字符串,那一定要在条件中将数据使用引号引用起来。否则不使用索引。(添加时,字符串必须’’)
六、sql语句优化
1.避免使用select *
2.连接()代替子查询
3.如果想要在含有or的查询语句中利用索引,则or之间的每个条件列都必须用到索引,如果没有索引,则应该考虑增加索引
七、数据表的优化
MyISAM:如果应用是以读操作和插入操作为主,只有很少的更新和删除操作,并且对事务的完整性要求不是很高。其优势是访问的速度快。(尤其适合论坛的帖子表)
InnoDB:提供了具有提交、回滚和崩溃恢复能力的事务安全。但是对比MyISAM,写的处理效率差一些并且会占用更多的磁盘空间。
Memory [一些访问频繁,变化频繁,又没有必要入库的数据 :比如用户在线状态]
选择合适的数据类型
分库分表
对标进行水平垂直划分:
数据库的读写分离