scrapy如何指定生成python3的项目_python 3.6 --实战Scrapy

一.Scrapy命令小结

scrapy 

二.Scrapy运行流程

Scrapy 使用了 Twisted异步网络库来处理网络通讯。整体架构大致如下

d9c21495431f3fa5abde174848f3a30f.png

Scrapy主要包括了以下组件:

1.引擎(Scrapy)
用来处理整个系统的数据流处理, 触发事务(框架核心)
2.调度器(Scheduler)
用来接受引擎发过来的请求, 压入队列中, 并在引擎再次请求的时候返回. 可以想像成一个URL(抓取网页的网址或者说是链接)的优先队列, 由它来决定下一个要抓取的网址是什么, 同时去除重复的网址
3.下载器(Downloader)
用于下载网页内容, 并将网页内容返回给蜘蛛(Scrapy下载器是建立在twisted这个高效的异步模型上的)
4.爬虫(Spiders)
爬虫是主要干活的, 用于从特定的网页中提取自己需要的信息, 即所谓的实体(Item)。用户也可以从中提取出链接,让Scrapy继续抓取下一个页面
5.项目管道(Pipeline)
负责处理爬虫从网页中抽取的实体,主要的功能是持久化实体、验证实体的有效性、清除不需要的信息。当页面被爬虫解析后,将被发送到项目管道,并经过几个特定的次序处理数据。
6.下载器中间件(Downloader Middlewares)
位于Scrapy引擎和下载器之间的框架,主要是处理Scrapy引擎与下载器之间的请求及响应。
7.爬虫中间件(Spider Middlewares)
介于Scrapy引擎和爬虫之间的框架,主要工作是处理蜘蛛的响应输入和请求输出。
8.调度中间件(Scheduler Middewares)
介于Scrapy引擎和调度之间的中间件,从Scrapy引擎发送到调度的请求和响应。

Scrapy运行流程大概如下:

1.

三.Scrapy安装后

1.

项目结构及其爬虫应用简介

project_name/
   scrapy.cfg
   project_name/
       __init__.py
       items.py
       pipelines.py
       settings.py
       spiders/
           __init__.py
           爬虫1.py
           爬虫2.py

文件说明:

scrapy.cfg  项目的主配置信息。(真正爬虫相关的配置信息在settings.py文件中)
items.py    设置数据存储模板,用于结构化数据,如:Django的Model
pipelines    数据处理行为,如:一般结构化的数据持久化
settings.py 配置文件,如:递归的层数、并发数,延迟下载等
spiders      爬虫目录,如:创建文件,编写爬虫规则

四.编写爬虫

代码:

import scrapy
from scrapy.http.response.html import HtmlResponse

class XiaohuarSpider(scrapy.Spider):
    name='xiaohuar'
    allowed_domains=['xiaohuar.com']
    start_urls=['http://www.xiaohuar.com/hua/']
    def parse(self,response):
        print(resopnse,type(response))
        print(response.body_as_unicode())
        current_url=reponse.url #爬取时请求url
        body=response.body #返回的html
        unicode_body=response.body_as_unicode() #返回html unicode编码

关于windows的编码问题

import sys,io
sys.stdout=io.TextIOWrapper(sys.stdout.buffer,encoding='gb18030')

备注:

1.爬虫文件需要定义一个类,并继承scrapy.spiders.Spider
2.必须定义name,即爬虫名,如果没有name,会报错。因为源码中是这样定义的。
3.编写函数parse,这里需要注意的是,该函数名不能改变,因为Scrapy源码中默认callback函数的函数名就是parse;
4.定义需要爬取的url,放在列表中,因为可以爬取多个url,Scrapy源码是一个For循环,从上到下爬取这些url,使用生成器迭代将url发送给下载器下载url的html。

运行:进入spiders目录,运行命令:

格式:scrapy crawl +爬虫名-nolog 即不显示日志

注:urllib.urlretrieve(ab_src, file_path) ,接收文件路径和需要保存的路径,会自动去文件路径下载并保存到我们指定的本地路径。

例子1:mySpider代码编写

抓取:传智播客课程培训师资库网站里的所有讲师的姓名、职称和个人信息。

步骤:

1.打开mySpider目录下的items.py
2.Item 定义结构化数据字段,用来保存爬取到的数据,有点像Python中的dict,但是提供了一些额外的保护减少错误。
3.可以通过创建一个 scrapy.Item 类, 并且定义类型为scrapy.Field的类属性来定义一个Item(可以理解成类似于ORM的映射关系)。
4.接下来,创建一个ItcastItem 类,和构建item模型(model)。

代码:

import 

爬虫:

1. 爬数据在当前目录下输入命令,将在mySpider/spider目录下创建一个名为itcast的爬虫,并指定爬取域的范围:

scrapy genspider itcast "itcast.cn"

##打开 mySpider/spider目录里的 itcast.py,默认增加了下列代码:
import scrapy
class ItcastSpider(scrapy.Spider):
    name = "itcast"
    allowed_domains = ["itcast.cn"]
    start_urls = (
        'http://www.itcast.cn/',
    )
    def parse(self, response):
        pass

解析:

要建立一个Spider, 你必须用scrapy.Spider类创建一个子类,并确定了三个强制的属性 和 一个方法。
name = "" :这个爬虫的识别名称,必须是唯一的,在不同的爬虫必须定义不同的名字。
allow_domains = [] 是搜索的域名范围,也就是爬虫的约束区域,规定爬虫只爬取这个域名下的网页,不存在的URL会被忽略。
start_urls = () :爬取的URL元祖/列表。爬虫从这里开始抓取数据,所以,第一次下载的数据将会从这些urls开始。其他子URL将会从这些起始URL中继承性生成。
parse(self, response) :解析的方法,每个初始URL完成下载后将被调用,调用的时候传入从每一个URL传回的Response对象来作为唯一参数,主要作用如下:
负责解析返回的网页数据(response.body),提取结构化数据(生成item),生成需要下一页的URL请求。

将start_urls的值修改为需要爬取的第一个url

start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)

修改parse()方法

def parse(self, response):
    filename = "teacher.html"
    open(filename, 'w').write(response.body)

然后运行一下看看,在mySpider目录下执行:

scrapy 

2. 取数据

爬取整个网页完毕,接下来的就是的取过程了,首先观察页面源码:

<div class="li_txt">
    <h3>  xxx  </h3>
    <h4> xxxxx </h4>
    <p> xxxxxxxx </p>

796c4bc33d1cc8da664108ea3efa2932.png

之前在mySpider/items.py 里定义了一个ItcastItem类。 这里引入进来

from mySpider.items import ItcastItem

然后将我们得到的数据封装到一个 ItcastItem 对象中,可以保存每个老师的属性:

import scrapy
class ItcastSpider(scrapy.Spider):
    name = 'itcast'
    allowed_domains = ['itcast.cn']
    start_urls = ("http://www.itcast.cn/channel/teacher.shtml",)
    def parse(self, response):
        filename = "teacher.html"
        open(filename, 'w').write(response.body)
from mySpider.items import ItcastItem
def parse(self, response):
    open("teacher.html","wb").write(response.body).close()
    # 存放老师信息的集合
    items = []
    for each in response.xpath("//div[@class='li_txt']"):
        # 将我们得到的数据封装到一个 `ItcastItem` 对象
        item = ItcastItem()
        #extract()方法返回的都是unicode字符串
        name = each.xpath("h3/text()").extract()
        title = each.xpath("h4/text()").extract()
        info = each.xpath("p/text()").extract()

        #xpath返回的是包含一个元素的列表
        item['name'] = name[0]
        item['title'] = title[0]
        item['info'] = info[0]

        items.append(item)

    # 直接返回最后数据
    return items

scrapy保存信息的最简单的方法主要有四种,-o 输出指定格式的文件,,命令如下:

#json格式,默认为Unicode编码
scrapy crawl itcast -o teachers.json

#json lines格式,默认为Unicode编码
scrapy crawl itcast -o teachers.jsonl

#csv 逗号表达式,可用Excel打开
scrapy crawl itcast -o teachers.csv

#xml格式
scrapy crawl itcast -o teachers.xml

将代码改成下面形式,结果完全一样。

# 存放老师信息的集合
    #items = []

    for each in response.xpath("//div[@class='li_txt']"):
        # 将我们得到的数据封装到一个 `ItcastItem` 对象
        item = ItcastItem()
        #extract()方法返回的都是unicode字符串
        name = each.xpath("h3/text()").extract()
        title = each.xpath("h4/text()").extract()
        info = each.xpath("p/text()").extract()
        #xpath返回的是包含一个元素的列表
        item['name'] = name[0]
        item['title'] = title[0]
        item['info'] = info[0]
        #items.append(item)
        #将获取的数据交给pipelines
        yield item
    # 返回数据,不经过pipeline
    #return items

上述步骤总结:

scrapy startproject mySpider
cd mySpider
scrapy genspider itcast "itcast.cn"
scrapy crawl itcast
scrapy crawl itcast -o teachers.xml

例子2:

目标任务:爬取职位搜索 | 社会招聘 | Tencent 腾讯招聘

信息,需要爬取的内容为:职位名称,职位的详情链接,职位类别,招聘人数,工作地点,发布时间。

1.创建Scrapy项目

scrapy startproject Tencent
#根据提示输入cd+项目名字进入项目
cd Tencent

命令执行后,会创建一个Tencent文件夹,结构如下:

8e6e2d17eeb381c1323ed1a013805326.png

2.编写item文件,根据需要爬取的内容定义爬取字段

import scrapy
class TencentItem(scrapy.Item):
    # 职位名
    positionname = scrapy.Field()
    # 详情连接
    positionlink = scrapy.Field()
    # 职位类别
    positionType = scrapy.Field()
    # 招聘人数
    peopleNum = scrapy.Field()
    # 工作地点
    workLocation = scrapy.Field()
    # 发布时间
    publishTime = scrapy.Field()

3.编写spider文件

进入Tencent目录,使用命令创建一个基础爬虫类:

#  tencentPostion为爬虫名,tencent.com为爬虫作用范围
scrapy genspider tencentPostion "tencent.com"

执行命令后会在spiders文件夹中创建一个tencentPostion.py的文件,如下:

现在开始对其编写:

import 

参考链接:Python爬虫框架Scrapy实例(一) - YangPython - 博客园

这是我见过最屌的Scrapy框架入门教程!相当于是教科书版的教程! - qq_42156420的博客 - CSDN博客

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值