先看看这道题的要求:
输入:两个正序数组(从小到大排好序的数组)
输出:中位数
最好理解的方法是合并后再排序,找到目标中位数,其他方法网上都有大多对我个人理解需要很仔细去一步一步看。
这里我用的方法其实还是类似合并后再排序但是这里没有合并的那步而是直接找中位数。
假如合并排序后的数组个数是奇数,例如5,那我们的目标就是找下标为2(5/2)的值。
假如合并排序后的数组个数是偶数,例如4,那我们的目标就是找下标为2(4/2)和1(2-1)的值加起来再除以2.
大致思路如下:
这里以一个例子来说明思路,下面两个数组(管它们叫数组a,数组b,合并的数组叫c)一个size是2一个是3,总数就是5为奇数,那我们的目标就是找到排序后下标为[2]的元素即c[2]。
如下图:
这里两个数组都不为空,我们先定两个索引,一个指向数组a[0],一个指向b[0],因为a[0]=3 < b[0]=4,那a[0]就是合并后的数组的第0个元素c[0],所以c[0]等于3;
因为a[0] < b[0],所以接下来idx1右移动下标,变成了下图:
这时候得到了a[1]=7 > b[0]=4,因此b[0]就是合并后的c[1],
然后因为a[1] > b[0],所以这次移动idx2,得到了下图:
接下来就不重复描述了,这时候得到了a[1]=7 > b[1]=6,因此c[2]就是b[1],这里我们也找到了目标的中位数c[2],
下面贴代码,这里自己手写的时候得考虑很多种情况,
double findMedianSortedArrays(int *nums1, int nums1Size, int *nums2, int nums2Size)
{
char is_odd = 0;
int targ_index1 = 0, targ_index2 = 0; // 目标索引
int index1 = 0, index2 = 0; // 遍历索引
int quer_index = 0; // 查询索引
double smart_val, big_val;
double answer = 0;
if ((nums1Size + nums2Size) & 0x01)
{
is_odd = 1;
}
// 奇数的中位数是合并排序两个数组后的中间索引
// 偶数的中位数是合并排序后的两个数组的中间两个数的平均值
if (is_odd)
{
targ_index1 = (nums1Size + nums2Size) >> 1;
}
else
{
targ_index1 = (nums1Size + nums2Size) >> 1;
if (targ_index1)
targ_index2 = targ_index1 - 1;
}
if (nums1Size && nums2Size)
{
if (nums1[index1] > nums2[index2])
{
smart_val = nums2[index2];
big_val = nums1[index1];
}
else
{
smart_val = nums1[index1];
big_val = nums2[index2];
}
}
else if (nums1Size)
{
smart_val = nums1[0];
if (nums1Size > 1)
{
big_val = nums1[1];
if (nums1Size > 2)
index1 = 1;
}
}
else if (nums2Size)
{
smart_val = nums2[0];
if (nums2Size > 1)
{
big_val = nums2[1];
if (nums2Size > 2)
index2 = 1;
}
}
//特殊情况直接返回
if (nums1Size + nums2Size == 2)
{
answer = (big_val + smart_val)/2;
return answer;
}
// 按顺序找到目标大小的索引 两个都没遍历完就一直查找
while (index1 < nums1Size || index2 < nums2Size)
{
//一直比较找最小值就是目标索引的值
if (targ_index2 == quer_index && !is_odd)
{
answer = smart_val;
}
if (targ_index1 == quer_index && !is_odd)
{
answer += smart_val;
answer /= 2;
break;
}
if (targ_index1 == quer_index && is_odd)
{
answer = smart_val;
break;
}
//遍历两个数组的时候需要考虑两个数组是否已经走到了尽头
if (nums1Size && index1 < (nums1Size - 1) && (!nums2Size || index2 >= nums2Size - 1 || (nums1[index1] < nums2[index2])))
{
index1++;
if (nums1[index1] > big_val)
{
smart_val = big_val;
big_val = nums1[index1];
}
else
{
smart_val = nums1[index1];
}
}
else
{
index2++;
if (nums2[index2] > big_val)
{
smart_val = big_val;
big_val = nums2[index2];
}
else
{
smart_val = nums2[index2];
}
}
quer_index++;
}
return answer;
}
然后我这里是挨个挨个找中位数的的,网上有看到比这个好的办法就是多个多个比,但是当时看的时候没完全吸收那种方法就不用了。