来自公众号:凹凸数据
大家好,我是朱小五
本来这个周末过得开开心心,结果为了解一道数学题薅掉了一把头发、、、整整18根!
而且还是一道小学数学题!!!
到底是什么题呢?大家看看吧
既然表妹都求到我这了,那就随便的做一做嘛。
这不就是一道逻辑题嘛!
先假如丁错,则甲乙丙对,此时最小的abc=(2^3)*(3^2)*7=504>500,不在题干范围之内。
那么也就是丁必对,甲乙丙中有一错。
等一下
然后嘞?
并不能判断甲乙丙哪个错啊!!!
难道要先假设甲乙丙中一个是错误,然后挨个穷举看哪个三位数满足丁(各个数字之和是15)的条件吗?
表妹啊,你才上五年级!你确定不是你们老师留错题了吗?
行吧行吧
既然要穷举还不如用python写个代码!
嘿嘿嘿,循环+判断走起
for a in range(1, 5):
for b in range(0, 9):
for c in range(0, 9):
abc = a * 100 + b * 10 + c
T1 = abc % 8 == 0 # 甲:abc可以被2整除3次
T2 = abc % 9 == 0 # 乙:abc可以被3整除2次
T3 = abc % 7 == 0 # 丙:abc可以被7整除
T4 = a + b + c == 15 # 丁:abc的各个数字之和是15
if T1 is True and T2 is True and T3 is True: #假设丁说谎, 甲乙丙的条件成立
print('丁说谎,abc=%s' % abc)
elif T1 is True and T2 is True and T4 is True: #假设丙说谎, 甲乙丁的条件成立
print('丙说谎,abc=%s' % abc)
elif T1 is True and T3 is True and T4 is True: #假设乙说谎, 甲丙丁的条件成立
print('乙说谎,abc=%s' % abc)
elif T2 is True and T3 is True and T4 is True: #假设甲说谎, 乙丙丁的条件成立
print('甲说谎,abc=%s' % abc)
成功得到答案:
把答案交给表妹,结果他告诉我光知道答案没用啊
总不能跟老师讲是用python遍历的吧。
行吧,这道逻辑题还是必须用逻辑解出来啊,
不然过年回家的时候,怎么好意思求表妹王者荣耀带我上荣耀王者?
我们再来总结一下题干中能够提取的信息:
按照甲的说法,abc能被2^3=8整除。
按照乙的说法,abc能被3^2=9整除。
按照丙的说法,abc能被7整除。
按照丁的说法,abc相加为15
陷入沉思
经过一(绞)番(尽)回(脑)忆(汁)后,终于想起了小学时候学的整除的特性:
被3整除:数字之和能被3整除(逢3必消)
被9整除:数字之和能被9整除(逢9必消)
根据这些特性,我一直忽略了丁的说法中还有隐藏条件:abc能被3整除,不能被9整除
这样一来,乙与丁的说法就是矛盾的。
上文我也说到了,假如丁错,则甲乙丙对,此时最小的abc=(2^3)*(3^2)*7=504>500,不在题干范围之内。
所以乙错了,甲丙丁是对的,此时abc能被8(甲)、7(丙)、3(丁)整除,则abc是8*7*3=168的倍数。小于500的168的倍数有168、336,只有1+6+8=15。
故abc = 168。
今年王者荣耀上荣耀王者有望了~
(完)
看完本文有收获?请转发分享给更多人
关注「Python那些事」,做全栈开发工程师
点「在看」的人都变好看了哦