design expert响应面分析_试验设计与分析

本文介绍了实验设计的重要性,特别是响应面分析在多因素多水平优化问题中的应用。通过Plackett-Burman设计(PB设计)筛选重要因素,并利用R语言的FrF2包进行实验设计与分析。通过方差分析和可视化工具,如MEPlot和halfnormal函数,帮助理解各因素对目标变量的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1d1b9d33db8f4d9d7c642b60c2a88df1.png

最近有同事询问Plackett–Burman design是啥意思,我不好意思说不知道,假笑片刻就说试验设计博大精深,我用的一般是正交试验跟响应面,PB设计可能是其中某种的简化,反正到头来都是方差分析云云给糊弄过去了。回过头来自然就是一通查资料挖坟,然后就挖到了《Statistics for experimenters》这本奇书。作者是 George E. P. Box,Fisher的女婿,而且下面这句就出自这本书的第二版:

d0e7bcca0783d5a5dd73ba3b6b2e5337.png

试验设计一般是面向高年级本科生与研究生开的课程,但讲的都比较抽象。什么随机化、均匀性什么的道理都明白,但真到科研里面基本还是要依赖查表与软件分析。也正是因为如此很多人都是照葫芦画瓢来做,软件告诉哪个好就用哪个,在这种情况下软件实际充当了水晶球,你信就是了。

《Statistics for experimenters》的第一章是值得所有试验学科人读一下的,因为George Box 在第一章里没有扯什么随机化、均匀性,而是聊了下认识论。开篇第一句就是“知识就是力量”,解决问题实际就是一个认识模型演进的过程。具体来说是一个归纳-演绎不断往复的过程,数据起了中介作用。例如下面这个认识过程:

(模型)每天都一样

(演绎)今天车会停在原位

(数据)车不在

(归纳)有人偷车

(模型)车丢了

(演绎)车不在原位

(数据)车又回来了

(归纳)有人偷了车还回来了

不得不说我还是头一回发现认知过程可以这样描述的,具体到试验,这个过程就成了(模型)想法 ->(演绎)实验设计 ->(数据)结果分析 ->(归纳)结论或新想法。这大概是试验设计能上升到的最高理论高度了。

好了,不扯了,这本书非常适合读,但并不适合练。因为作者虽然用了很多很直观的解释方法让读者明白原理,但并未涉及软件层面。当然,提供代码也是最近才开始在技术书籍中流行的,这本书描绘了一个清晰的试验设计与分析框架,而我下面说的是结合R的一些从问题视角的实战。

现实生活中需要试验设计的场景一般都是多因素多水平寻优问题,翻译成人话就是

y=f(x)中,y代表了你期望最优的东西,x代表了会对y产生影响的自变量,如果你的问题可以抽象成 y=f(x),那就可以通过构建模型来解决。试验设计主要关心的是方差分析这个视角,简单说就是y

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值