python data_python Dataframe常用操作

DataFrame

读取数据

data=pd.read_table(filepath+ 'profile.txt',header=None)

data.to_excel(filename)

具体参考https://blog.csdn.net/u010801439/article/details/80052677

随即生成m*n的矩阵   df = pd.DataFrame(np.random.randn(m,n) , index = range(m),columns=range(n))

添加元素

data=data.append(data.mean(),ignore_index=True )

连接dataframe   datadeal= pd.concat([r2, r1], axis = 1) #横向连接(0是纵向)

计算数据

计算不同列的和  data['1-2'] = data.apply(lambda x: x[0]+x[1], axis=1)

计算所有行的和data.loc['Row_sum'] = data.apply(lambda x: x.sum())  #data.loc['Row_sum'] = data.apply(lambda x: x[0]+x[1])

选择提取元素

选择不同的列 data.T[24:29].T ===data.iloc[:,24:29]

删除元素

rdata=data.drop([16,17]) 返回删除删掉16,17行的数据 ,axis=1则表示删除列,加入参数inplace=True 则原始数据会改变,rdata为none

del data['aa'] 删除一列名为aa的元素

time=data.pop('name')

数据分类:

data_group=data.groupby('INDEX')defattr_trans(x):

result=pd.Series(index=['NAME'])

result['NAME']=x['NAME'].iloc[0]returnresult

data_process=data_group.apply(attr_trans)print(data_process)

图像图例右移:

plt.legend(loc='center left', bbox_to_anchor=(1, 0.5))

numpy数据翻转

def VerticalFlipping(self,data):#垂直翻转

if data.shape[0]<=1:returndata

newarray=np.zeros(data.shape)for i inrange(data.shape[0]):

newarray[i]=data[-i-1]returnnewarraydef HorizontalFlipping(self,data):#水平翻转

if data.shape[1]<=1:returndata

newarray=np.zeros(data.shape)for i in range(data.shape[1]):

newarray[:,i]=data[:,-i-1]return newarray

locals()['data'+namearray[i]]=pd.read_table(filepath+ namearray[i]+'.txt',header=None)#动态创建变量

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值