旋度的散度为零证明_微积分-14.散度与旋度

本文通过草船借箭的故事引入,生动解释了数学中的散度和旋度概念。首先,通过箭雨向量场模型,讨论了通量作为描述箭雨密集程度的量。接着,介绍了散度作为衡量向量场发散或汇聚程度的工具,并通过电影《太极张三丰》中的场景解释了旋度如何描述向量场的旋转力度。文章深入浅出地阐述了散度和旋度在向量场中的作用,以及它们与通量、环流量的关系。
摘要由CSDN通过智能技术生成

e0ef7857611bc584af55f037e18b4845.png

草船借箭

草船借箭是《三国演义》中我们都耳熟能详的典故。

赤壁之战前夕,周瑜设计诸葛亮,让其立下三日之内造十万支箭的军令状。诸葛亮在第三日清晨,布置了二十只扎有草人的木船借着大雾靠近曹营,以疑兵之计让曹操命部下以弓箭拒敌,从而利用草人尽收曹军箭支。

这里,我们并不想要探讨演义中由罗贯中杜撰的这一计策在实际中的可行性,而是为了,来看草船借箭这一过程中的有趣的数学模型。

第一个有趣的抽象是,我们可以将曹军源源不断射击所产生的箭雨,取某一单位时刻,理想的看作是一个向量场:

即其一点处的场函数的输出结果表示着这一点处的箭矢,它具有一个飞行的方向与箭支长度。为了方便作后续的讨论,我们对箭雨场作两个理想化的处理:

  1. 我们认为所有箭矢都的箭长都是相等的;
  2. 一般情况,在箭雨中任取一点,取到的这一点并不一定总是恰好处于一支箭的箭尾,也就是说可能位于这一点的箭长是不完整的。为了规避这一点,我们也理想化的认为在该场中取到的点,若这一点上有箭矢,它总是一支完整的箭矢。

这两点理想化的约定,可以使得在场函数

中任取一点处,其结果只能为:

要么

,代表这一点处没有箭矢;

要么

,代表这一点处恰好有一支处于飞行中的箭,且长度为1。

a4c4faaff3678395501ec01931d47108.png
理想化的箭雨

与数学上所设想的连续流体向量场相比,这里理想化的箭雨有几个特点:

一是,它是一个非连续的向量场,在箭雨中,总是存在着没有箭支的空间区域(即存在

)——而这一特点,能够让我们更为直观的感受箭雨的
密集程度;

二是,箭的外形可以说天生就是向量的具象化,因此用它来做类比的时候,能够更为自然和形象。


第二

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>