草船借箭
草船借箭是《三国演义》中我们都耳熟能详的典故。
赤壁之战前夕,周瑜设计诸葛亮,让其立下三日之内造十万支箭的军令状。诸葛亮在第三日清晨,布置了二十只扎有草人的木船借着大雾靠近曹营,以疑兵之计让曹操命部下以弓箭拒敌,从而利用草人尽收曹军箭支。
这里,我们并不想要探讨演义中由罗贯中杜撰的这一计策在实际中的可行性,而是为了,来看草船借箭这一过程中的有趣的数学模型。
第一个有趣的抽象是,我们可以将曹军源源不断射击所产生的箭雨,取某一单位时刻,理想的看作是一个向量场:
即其一点处的场函数的输出结果表示着这一点处的箭矢,它具有一个飞行的方向与箭支长度。为了方便作后续的讨论,我们对箭雨场作两个理想化的处理:
- 我们认为所有箭矢都的箭长都是相等的;
- 一般情况,在箭雨中任取一点,取到的这一点并不一定总是恰好处于一支箭的箭尾,也就是说可能位于这一点的箭长是不完整的。为了规避这一点,我们也理想化的认为在该场中取到的点,若这一点上有箭矢,它总是一支完整的箭矢。
这两点理想化的约定,可以使得在场函数
中任取一点处,其结果只能为:
要么
,代表这一点处没有箭矢;
要么
,代表这一点处恰好有一支处于飞行中的箭,且长度为1。
与数学上所设想的连续流体向量场相比,这里理想化的箭雨有几个特点:
一是,它是一个非连续的向量场,在箭雨中,总是存在着没有箭支的空间区域(即存在
)——而这一特点,能够让我们更为直观的感受箭雨的
密集程度;
二是,箭的外形可以说天生就是向量的具象化,因此用它来做类比的时候,能够更为自然和形象。
第二