东软oracle题库,东软Oracle期末作业1

本文详细解析了“产品”表与“供应商”表的数据结构,并针对SQL语句ALTERTABLE供应商DISABLECONSTRAINT供应商标识_pkCASCADE;的作用进行了讨论。该语句用于禁用“供应商”表中“供应商标识”列上的完整性约束条件。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

30dd6935fa87d76e18f3240b6a456e76.png

审核以下答案, 反馈信息和问题得分。星号 (*) 表示正确答案。

Section 10

eb0b74962d922b27e5c6092abeb2c477.png

(回答此部分的所有问题)

249c8b118069d27547b736257dbf5963.png

d9be8e8e3ca66b4753f84c42d313cb9e.png

b7b02cbf111e32efaf0d73dd8c12a802.png

c2c46b36816a66103863aa4109a88a99.png

25b6e36243600c1a9894c62289b01ce8.png

7c79605e08e6ffa9fcd79704e1f8af01.png

297413f6f6912adf17a24a38bb6b432f.png

3033870900329750ce808d51bf1d8b04.png

6d165c78975cb63335c1129e19b1b41b.png

1c57e3a5c5f262719a91a82df9ded4f9.png

1b9482b1e54170cbc96cd6b1a445309a.png

1. 分析“产品”表和“供应商”表的结构。 产品:

产品标识 NUMBER NOT NULL, PRIMARY KEY

产品名称 VARCHAR2 (25)

供应商标识 NUMBER FOREIGN KEY “供应商”表的“供应商标识”列的外键 价目表价格 NUMBER (7,2)

成本 NUMBER (7,2)

存货数量 NUMBER

订单数量 NUMBER

重新订购级别 NUMBER

重新订购数量 NUMBER

供应商:

供应商标识 NUMBER NOT NULL, PRIMARY KEY

供应商名称 VARCHAR2 (25)

地址 VARCHAR2 (30)

城市 VARCHAR2 (25)

区域 VARCHAR2 (10)

邮政编码 VARCHAR2 (11)

评估以下语句: ALTER TABLE 供应商

DISABLE CONSTRAINT 供应商标识_pk CASCADE;

您会在执行哪项任务时发出此语句?

标记为待复查

(1)

分数

删除引用“供应商”表的所有约束条件

2b52a938549cf0e23c4258ceb044882d.png

8537eb0879f3f347d381d943873770c4.png

be52f37fd17381178c8f2ab13c39a91f.png

dc34f7ac9c1c703f54fea1812d351c93.png

363b83630ad9e749ba5f80682a2b4989.png

ef7a91049dfbd310b8f2ec0084c1c351.png

279b8b4b27683b7b6bb4a292c00fce53.png

cae366f8795202f830158ce5300eb511.png

615e5daa6e8afb560a7bdf25c5b7467c.png

890367742e2b591bc64eb5eff5556d97.png

删除“产品”表上的

FOREIGN KEY 约束条件

3e977e28861e7bc6b3b59b6fade9854e.png

639cc722e9c20d3ca037bf7ddcfde33d.png

55aab3656599d98ddfcb12e832e59354.png

ed0a8beaa22f84389806ed8621938bb4.png

删除引用“产品”表的所有约束条件

c8654bf9f0142b5839d238bb7dc62c08.png

8cc03d8c93cdf2405997ac1d5e9c0d84.png

0a05c7fd707c0d5e2052daa20294640e.png

b2782ba0bba4dd4762b679425450919e.png

abece38e5ab4745a42a311df872da174.png

236973412fed516687e558636094c9d2.png

65b614fe6e55750a54bf58e5e126a474.png

8c342699aca02f020046e959ee2673b0.png

禁用“产品”表中“供应商标识”列上的任何相关的完整性约束条件 禁用“供应商”表中“供应商标识”列上的任何相关的完整性约束条件 (*)

c6667dccbb1f9bfe49355f86a0ead674.png

53079486a23840516f1cbdb3a48b0cf3.png

4c85087accdf44e1f4feab6c7a41c02f.png

c797d8e2160a304baa746fea07b48f44.png

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值