数据挖掘肿瘤预测_Nature Medicine封面文章:利用单核细胞数量预测及评估肿瘤免疫治疗效果...

研究表明,经典单核细胞(CD14+CD16−HLA-DRhi)比例可作为预测PD-1药物响应的生物标志物。通过对肿瘤患者免疫细胞的质谱流式分析,科学家们利用数据挖掘和机器学习算法(如Cellcnn)发现,这一特定亚群在响应者和非响应者间的差异显著,为临床免疫治疗提供了预测工具。
摘要由CSDN通过智能技术生成

免疫检查点阻断已经彻底改变了癌症治疗,临床实验数据表明PD-1、PD-L1抗体的免疫治疗可以有效应对转移性黑色素瘤和多种其他类型的癌症。尽管无进展生存期显着增加,临床治疗结果也呈现很大的个体差异,只有一小部分患者对药物表现出持久的反应,大部分患者并未显示持久的反应。因此,找到一些预测临床预后的Bio-Marker,以便在开始治疗之前区分应答者(Responder)与无应答者(Nonresponder)是十分紧迫的。

2018年年初,瑞士苏黎世大学的研究人员在《Nature Medicine》杂志上发表了其在该领域的最新研究成果。他们发现,病人外周血PBMC中具有CD14+CD16−HLA-DRhi表型的经典单核细胞比例可以作为预测病人对PD-1药物反应性的Bio-Marker。

在这项研究中,科研人员选择了20个黑色素瘤病人在治疗前后的PBMC样本做为研究对象。为了对细胞的表型和功能进行系统深入的分析,他们利用质谱流式技术(Mass Cytometry)对样本进行高维单细胞分析。

A Workflow of “Data Driven Research”

质谱流式技术是近年来兴起的单细胞多参数分析技术,利用带有金属元素标签的抗体对细胞进行标记,然后利用质谱对单细胞上的标签元素进行检测,从原理上避免了传统流式技术所面临的荧光串色、自发荧光等问题。

出于研究工作的需要,研究人员一共使用了三个不同的抗体组合(Panel)对样本进行分析。第一个Panel包含30个白细胞Marker,可以识别外周血中所有主要免疫细胞亚群以及T细胞分化激活的各个阶段;第二个Panel主要是对T细胞表型和功能的细致分析,包含了T细胞相关的表面Marker以及各种相关的Cytokine;第三个Panel则主要针对髓系细胞,用来对髓系细胞进行更深入的亚群分析。三个Panel的共同使用从不同角度全方位展示了外周血PBMC样本中各类细胞亚群的表型和功能,以及其在不同分组(Responder和Nonresponder)或者治疗前后的差异。

毫无疑问,质谱流式高维检测的特性使其能够从有限的样本获得规模庞大的数据,这种能力对于 Biomarker的寻找是非常有帮助的。而从这些数据中找出我们所需要的“Biomarker”,则需要一套行之有效的数据分析方法和流程。

这项研究的目的是寻找预测PD-1抗体治疗预后的生物标志物,因此需要找出Responser 和 Nonresponder病人在治疗前的样本中的特征性差异。为了解决这个问题,作者采用了多种手段进行了数据挖掘。

在以往的质谱流式相关研究中,一个经典的数据分析流程被广泛采用:先用手工Gate或者聚类的方法将样本细分为若干亚群,然后利用统计学方法寻找和检查这些细胞亚群在比例、Marker表达强度等方面在不同分组之间的差异。

作者通过FlowSOM对细胞进行的聚类分析结果

所有亚群展示在viSNE图上

事实证明,这套流程行之有效。作者通过FlowSOM算法对样本进行多轮聚类分析,然后对两组样本所包含的各个亚群比例进行对比统计分析。结果表明,具有CD14+CD16−HLA-DRhi表型的经典单核细胞亚群比例在Responder中明显高于Nonresponder样本。

除了这种经典的分析方法,随着人工智能(Artificial Intelligent)时代的到来,一些新兴的机器学习算法也正在越来越多的被应用于质谱流式数据的分析,Cellcnn就是一个例子。Cellcnn是一种基于卷积神经网络的分析方法,通过机器学习自动获得能够显著区分两组样本的Marker组合。这是一种Data driven research方式进行的数据分析,尽量减少数据分析过程中的人工干预,其所得出的Marker组合不需要和已知亚群的表型一致,这也排除了人为主观因素对于数据分析结果的影响。

借助Cellcnn方法,研究人员对治疗前的两组样本数据进行分析,发现了一个髓系亚群在Responder中的比例为4.8% ± 2.0%,而Nonreponder样本中的比例为2.4% ± 1.5%,两者在统计学上具有显著差异。而这个髓系的亚群属于单核细胞,其核心表型为:CD14+CD33+HLA-DRhi ICAM1+CD64+CD141+CD86 +CD11c+CD38+PD-L1+CD11b+,viSNE图上的叠加对比表明,该亚群与前面经典方法筛到的亚群具有相当的一致性,这也显示了Cellcnn这一方法的有效性。

圆圈标记的是通过Cellcnn机器学习算法找到的可以区分

Nonresponder组和Responder组的特征性亚群

当然, Cellcnn只是人工智能在质谱流式数据分析方面的牛刀小试,可以肯定,在未来更多基于人工智能的分析方法会应用于质谱流式数据的分析,成为深度数据挖掘、临床Bio-Marker的寻找、甚至解决一些基础科学问题的有力工具;另一方面,人工智能的广泛和深度应用将进一步降低数据分析的门槛,这对于质谱流式技术的普及和对质谱流式数据的充分利用有着巨大的推动作用,可谓影响深远。

利用传统流式对新发现的BioMarker的临床验证

为了将质谱流式寻找到的Bio-Marker应用于临床,研究人员减少较少原来Panel中的Marker数量以便使用传统荧光流式进行验证。通过对来自另外31名患有黑素瘤的患者治疗前的PBMC进行了盲测。这组病人中包含15个应答者(Responder)和16个无应答者(Nonresponder),传统流式结果确认了在两组病人中CD14+CD16−HLA-DRhi的亚群比例存在显著差异。根据模型研究人员确定了19.38%做为最佳的判断阈值,即当这一亚群的比例大于19.38%时,推荐对病人使用抗体PD-1抗体治疗方案。这些结果显示出该研究光明的应用前景。

Reference:

1、High-dimensional single-cell analysis predicts response to anti-PD-1 immunotherapy. Krieg C etc., Nat Med. 2018 Feb;24(2):144-153.

2、CyTOF workflow: differential discovery in high-throughput high-dimensional cytometry datasets. Nowicka M ect., F1000research.11622.2. eCollection 2017.

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值