典范对应分析(CCA)与去趋势典范对应分析(DCCA)概述

典范对应分析(canonical correspondence analysis,CCA)是单峰约束排序方法,是对应分析 (CA)与多元回归的结合,其算法源自冗余分析 (RDA)。同RDA,CCA涉及两个数据矩阵,响应变量矩阵(物种多度数据集)以及解释变量矩阵(环境变量数据集)。与仅使用物种多度数据的CA相比,CCA可以结合多种环境变量一起分析,从而更好地反映群落与环境的关系。与CA一致,响应变量矩阵必须为频度或类频度、同量纲的非负数据。 CA 中有时会产生“弓形效应”, CCA 中同样如此。与此对应,衍生了去趋势典范对应分析( Detrended Canonical Correspondence Analysis , DCCA )以解决这个问题。 本篇对 CCA 和 DCCA 作个简介。
CCA算法的简化描述
CA的发展过程中出现了两种计算方法,与此对应,存在两种CCA的计算方法。尽管计算过程存在区别,但结果都是一致的。以下是CCA计算过程简述,细节部分可参考Legendre和Legendre(1998)“Numerical Ecology”,594页后的内容。
基于迭代的CCA(最初方法)
这种CCA 方法的基本思路是在基于迭代的CA过程中,将每轮迭代获得的样方得分(坐标值)都与环境因子以多元回归的方式相结合。简化步骤如下:
(1)从任意(随机)样方得分(xi)开始。
(2)以样方中物种丰度加权的样方得分(xi)平均值计算物种得分(uj),权重(wij)代表了物种(j)在样方(i)中的丰度。
uj = ∑(wij * xi) / ∑(wij)