rda冗余分析步骤_群落分析的典范对应分析(CCA)概述

本文介绍了CCA(典范对应分析)的计算过程,包括基于迭代的CCA方法,强调了其在环境变量解释生物群落结构中的作用。CCA通过多元回归结合环境因子,提供物种与环境变量间的关系。此外,还提到了DCCA用于去除弓形效应,并提供了相关资源以深入理解CCA和相关生态学分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

9b4930a94f18978cd8abcccd261ad051.gif 典范对应分析(CCA)与去趋势典范对应分析(DCCA)概述 2a8f9457503ebbaea5c1047e5f5ac242.gif 典范对应分析(canonical correspondence analysis,CCA)是单峰约束排序方法,是对应分析 (CA)与多元回归的结合,其算法源自冗余分析 (RDA)。同RDA,CCA涉及两个数据矩阵,响应变量矩阵(物种多度数据集)以及解释变量矩阵(环境变量数据集)。与仅使用物种多度数据的CA相比,CCA可以结合多种环境变量一起分析,从而更好地反映群落与环境的关系。与CA一致,响应变量矩阵必须为频度或类频度、同量纲的非负数据。 CA 中有时会产生“弓形效应”, CCA 中同样如此。与此对应,衍生了去趋势典范对应分析( Detrended Canonical Correspondence Analysis , DCCA )以解决这个问题。 本篇对 CCA 和 DCCA 作个简介。

CCA算法的简化描述

CA的发展过程中出现了两种计算方法,与此对应,存在两种CCA的计算方法。尽管计算过程存在区别,但结果都是一致的。以下是CCA计算过程简述,细节部分可参考Legendre和Legendre(1998)“Numerical Ecology”,594页后的内容。

基于迭代的CCA(最初方法)

这种CCA 方法的基本思路是在基于迭代的CA过程中,将每轮迭代获得的样方得分(坐标值)都与环境因子以多元回归的方式相结合。简化步骤如下:

(1)从任意(随机)样方得分(xi)开始。

(2)以样方中物种丰度加权的样方得分(xi)平均值计算物种得分(uj),权重(wij)代表了物种(j)在样方(i)中的丰度。

uj = ∑(wij * xi) / ∑(wij)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值