python截图搜题_用python的OCR实现自动截图搜题

介绍了一种利用OCR技术和Python编程实现自动从图片中识别题目并搜索答案的方法,有效提高在线答题效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学以致用系列(一)

一.思路设计

最近两天因为要频繁刷一个题库,然后囿于时间的限制并且是在app里面做的练习,所以不能一边搜答案一边答题。这样的话凭本事做的话命中率一定会比较低。。。。。急中生智想了一个偷懒的方法。

用电脑的模拟器打开手机上的那个app

截取每一道问题的图片

通过OCR把图里面的问题识别成文字

把问题出来放在百度上面就可以查到答案了。

而且!!!!!以上都是可以用代码写出来的。

所以做每道题的时候需要以下几步,

手动截图并运行代码

代码部分实现以下功能:识别图片中的问题—自动打开浏览器—在百度输入问题

人工筛选出结果并选择答案

因为用python实现的,代码部分主要是需要搭建一个python中ocr的环境(ocr安装在这里:https://blog.csdn.net/sinat_37802274/article/details/80030063)。

每道题的答题时间是三十秒,上面三步完成基本是够的。(为了答题的命中率我也是蛮拼的了。。。)

二.实际操作如下:

1.截图的题干:

2.文字识别出来的结果:

3.自动打开百度并搜索:

三.其他

1.因为这个文字库是官方默认的,最近几天没有太多的时间给自己训练字库,所以识别出来的结果会比较飘。。。

2.每次截取图片都需要自己手动截图比较复杂,这个是后面可以加上自动截图的模块的。实现一键百度出结果的功能。

3.仔细想了想过年那段时间那么火的答题app也是可以用这个来实现“开挂”操作的。。。

4.代码也不是很复杂就不放了。

### 实现Python截图功能 为了实现Python截图的功能,可以采用图像识别技术配合索引擎API来完成。具体来说,先通过截屏获取当前屏幕上的目图片,再利用OCR(Optical Character Recognition)光学字符识别工具将图片中的文字转换成可编辑的文本形式,最后使用这些提取的文字作为关键字向在线数据库或索引擎发起查询请求。 #### 使用Pillow库进行截图操作 对于截取屏幕的操作,在Python中有多种方法可以选择,这里推荐使用`Pillow`这个强大的图像处理库来进行简单的全屏抓图或是指定区域内的画面捕捉[^2]。 ```python from PIL import ImageGrab def capture_screen(): img = ImageGrab.grab() # 抓取整个屏幕 return img ``` #### 应用Tesseract执行OCR任务 当获得了含有习信息的画面之后,则需调用专门用于文字检测的服务——比如Google提供的免费版Tesseract OCR引擎。安装好对应环境后可通过pytesseract接口轻松读取出位图文件里的字符串数据。 ```python import pytesseract def ocr_image(image_path): text = pytesseract.image_to_string(Image.open(image_path), lang='chi_sim') # 支持中文识别 return text.strip() ``` #### 整合百度或其他索引擎API发送索请求 拿到解析后的纯文本串以后就可以考虑怎样定位到最接近的标准答案了。一种思路是借助第三方平台开放出来的RESTful API接口(像Baidu、Sogou等),按照官方文档说明构建合适的HTTP GET/POST包体并附带必要的认证参数提交给服务器端口;另一种则是直接模拟浏览器行为爬虫访问网页获取返回结果页面HTML源码进一步分析抽取有用部分。 ```python import requests def search_question(query_text): url = 'https://www.baidu.com/s' params = {'wd': query_text} response = requests.get(url, params=params) if response.status_code == 200: return response.text else: raise Exception('Search failed') ``` 综上所述,上述代码片段展示了如何基于Python语言编写一套简易版本的自动化在线查脚本框架结构。当然实际应用过程中还需要针对不同场景做适当调整优化才能达到更好的效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值