(本科·复变函数论·含例题详解)柯西积分定理及公式

        本文讲述柯西积分定理,在此之前会介绍很多相关概念。

一、复积分的概念及性质

1. 有向曲线

        设

C:\left\{\begin{matrix} x=x(t)\\ y=y(t) \end{matrix}\right. (\alpha \leq t\leq \beta )

        其中x'(t)y'(t)[\alpha ,\beta ]上连续,且[x'(t)]^2+[y'(t)]^2\neq 0,则称

C:z(t)=x(t)+iy(t)    (\alpha \leq t\leq \beta )

        为z平面上的一条光滑曲线(其中z'(t)连续且不为0)。

        关于闭曲线正向的定义:观察者顺着此方向沿着C前进一周,C的内部一直在观察者的左边。这就很像分析学中的诱导定向,具体例子如下图

2. 复积分的定义

        设w=f(z)在C上有定义,C为从点A到点B的一条光滑有向曲线。

        (1)分割

        将\overset{\LARGE{\frown}}{AB}分成n个小弧段:A=z_0,z_1,...,z_n=B

        (2)取近似

        \forall \xi_k \in\overset{\LARGE{\frown}}{z_{k-1}z_k},作乘积f(\xi_k)\Delta z_k

        (3)求和

        作和式S_n=\sum ^n_{k=1}f(\xi_k)\Delta z_k,其中\Delta z_k=z_k-z_{k-1},记\Delta S_k\overset{\LARGE{\frown}}{z_{k-1}z_k}的长度,\delta=max \{\Delta S_k\}

        (4)取极限

        若无论什么样的分割都有

\underset{\delta,n\rightarrow 0}{lim}\sum ^n_{k=1}f(\xi_k)\Delta z_k

        则称f(z)在C上可积,上述积分可记作

        \int _ { c } f ( z ) d z = \underset{\delta\rightarrow 0}{lim}\sum _ { k = 1 } ^ { n } f ( \zeta _ { k } ) \Delta z _ { k }

        上述对复积分的定义和分析中是类似的,都是采用分割近似求和取极限的步骤。

3. 复积分存在的充要条件

        必要条件:f(z)沿C有界。

        充分条件:对于f(z)=u(x,y)+iv(x,y),需要u(x,y)v(x,y)均在C上连续,且极限分别为\int _Cudx-vdy,\int _Cvdx+udy

        于是有如下定理:如果f(z)=u(x,y)+iv(x,y)沿着曲线C连续且有界,则f(z)可积,且

\int _C f(z)dz=\int _C udx-vdy+i\int _C vdx+udy

4. 复积分的性质

        其实复积分的性质和实积分在很多情况下是一样的

  1. \int _C f(z)dz=-\int _{-C} f(z)dz
  2. \int _ { C } k f ( z ) d z = k \int _ { c } f ( z ) d z
  3. \int _ { c } \left[ f ( z ) \pm g ( z ) \right] d z = \int _ { c } f ( z ) d z \pm \int _ { c } g ( z ) d z
  4. C=C_1+C_2+...+C_n\int _ { c } f ( z ) d z = \int _ { C _ { 1 } } f ( z ) d z + \int _ { C _ { 2 } } f ( z ) d z + \cdots + \int _ { C _ { n } } f ( z ) d z
  5. | \int _ { c } f ( z ) d z | \leq \int _ { c } | f ( z ) | | d z | = \int _ { c } | f ( z ) | d s| d z | = \sqrt { ( d x ) ^ { 2 } + ( d y ) ^ { 2 } } = d s
  6. 设曲线C的长度为L,函数f(z)在C上满足|f(z)|\leq M,则有积分估值定理\int _ { c } f ( z ) d z | \leq \int _ { c } | f ( z ) | d s \leq M L

5. 复积分的参数方程(简化运算)

        设曲线C的参数方程为:z=z(t)=x(t)+iy(t),(\alpha \leq t\leq \beta ),则有

\int _ { c } f ( z ) d z = \int _ { a } ^ { \beta } ( u ( t ) x ^ { \prime } ( t ) - \nu ( t ) y ^ { \prime } ( t ) ) d t + i \int _ { a } ^ { \beta } ( v ( t ) x ^ { \prime } ( t ) + u ( t ) y ^ { \prime } ( t ) ) d t

= \int _ { \alpha } ^ { \beta } \left\{ u ( t ) + i v ( t ) \right\} \left\{ x ^ { \prime } ( t ) + i y ^ { \prime } ( t ) \right\} d t

\Delta \int _ { \alpha } ^ { \beta } f \left[ z ( t ) \right] z ^ { \prime } ( t ) d t

        这里总结几类常见曲线的复数方程

  1. 连接z_1,z_2两点的线段参数方程为z=z_1+t(z_2-z_1),(0\leq t\leq 1)
  2. z_1,z_2两点的直线参数方程为z=z_1+t(z_2-z_1),(-\infty < t< +\infty)
  3. z_0为中心,r为半径的正向圆周的参数方程为z = z _ { 0 } + r e ^ { i \theta } , 0 \leq \theta \leq 2 \pi

        例:计算\oint _c \frac { d z } { ( z - z _ { 0 } ) ^ { n + 1 } },这里C表示以z_0为中心,r为半径的正向圆周,n为整数。

        解:C:z=z_0+re^{i\theta}0\leq \theta\leq 2\pi

        \oint _ { C } \frac { d z } { ( z - z _ { 0 } ) ^ { n + 1 } } = \int _ { 0 } ^ { 2 \pi } \frac { i r e ^ { i \theta } } { r ^ { n + 1 } e ^ { i ( n + 1 ) \theta } } d \theta

= \int _ { 0 } ^ { 2 \pi } \frac { i } { r ^ { n } e ^ { i n \theta } } d \theta =\left\{\begin{matrix} 2\pi i,n=0\\ 0, n\neq 0 \end{matrix}\right.

        这是一条很重要的结论,后续柯西积分公式会反复使用这个结论:

\oint _C\frac{dz}{(z-z_0)^n}=\left\{\begin{matrix} 2\pi i,n=1\\ 0,n\neq 1 \end{matrix}\right.

        该结果和圆心与半径没有任何关系!再看一个例子:

        例:计算\underset{|z-1|=1}{\int } \frac { z } { z - 1 } d z

        解:C:z=z_0+re^{i\theta}0\leq \theta\leq 2\pi

\underset{|z-1|=1}{\int}\frac { z } { z - 1 } d z = \int _ { 0 } ^ { 2 \pi } \frac { 1 + e ^ { i \theta } } { e ^ { i \theta } } i e ^ { i \theta } d \theta = \int _ { 0 } ^ { 2 \pi } i d \theta + \int _ { 0 } ^ { 2 \pi } i e ^ { i \theta } d \theta

        = 2 \pi i + i \int _ { 0 } ^ { 2 \pi } ( \cos \theta + i \sin \theta ) d \theta = 2 \pi i

二、柯西积分定理

        研究的问题:什么条件下,积分与路径无关?此问题等价于沿任意的闭曲线积分是否等于零。

1. 定理一(柯西积分定理)

        若f(z)在单连通区域D内解析,则对于D内任一条曲线C,都有

\oint _ { c } f ( z ) d z = 0

推论1

        设f(z)在单连通区域D内解析,则在D内f(z)的积分与路径无关,这时

\int _ { c } f ( z ) d z = \int _ { z _ { 0 } } ^ { z _ { 1 } } f ( z ) d z

推论2

        设f(z)在闭合曲线C上及C内无奇点,则

\oint _ { c } f ( z ) d z = 0

        原函数的想法:若f(z)在单连通区域D内解析,则在D内积分与积分路径无关;但当z在区域D内变化时,积分值也变化,并且该积分在D内确定了一个单值函数,记作

F ( z ) = \int _ { z _ { 0 } } ^ { z } f ( \zeta ) d \zeta

        由此有如下定理。

2. 定理2

        设f(z)在单连通区域D内解析,则F(z)在D内解析,且

F'(z)=f(z)

3. 定理3

        任何两个原函数相差一个常数(听起来像废话)。

4. 定理4

        设f(z)在单连通区域D内解析,F(z)f(z)的一个原函数,则

\int _ { z _ { 0 } } ^ { z _ { 1 } } f ( z ) d z = F ( z _ { 1 } ) - F ( z _ { 0 } ) ( z _ { 0 } , z _ { 1 } \in D )

        这是牛顿-莱布尼兹公式在复积分的应用。在区域单连通而函数解析的情况下,可用此公式求复变函数的积分,特别是处处解析的函数的积分。

5. 定理5(复合闭路定理)

        设D是由\Gamma = C + C _ { 1 } ^ { - } + C _ { 2 } ^ { - } + \cdots + C _ { n } ^ { - }所围成的有界多连通区域,若f(z)在D内及其边界\Gamma上解析,则

        \oint _ { \Gamma } f ( z ) d z = 0

        或

\oint _ { c } f ( z ) d z = \sum _ { i = 1 } ^ { n } \oint _ { c _ { i } } f ( z ) d z

        此式说明一个解析函数沿闭曲线积分,不因闭曲线在区域内作连续变形而改变它的积分值,只要在变形过程中曲线不经过f(z)的不解析点——闭路变形原理。

        例:计算\oint _ { \Gamma } \frac { 2 z - 1 } { z ^ { 2 } - z } d z\Gamma:包含圆周|z|=1在内的任意正向简单闭曲线。

        解:原式=\int _ { \Gamma } { ( \frac { 1 } { z -1} } + \frac { 1 } { z } ) d z= \int _ { C _ { 1 } + C _ { 2 } }\frac{1}{ z - 1} d z + \int _ { C _ { 1 } + C _ { 2 } } \frac { 1 } { z } d z= \int _ { C _ { 2 } }\frac{1}{ z - 1} d z + \int _ { C _ { 1 } } \frac { 1 } { z } d z

=2\pi i +2\pi i =4\pi i

        其中\oint _ { C _ { 1 } } \frac { 1 } { z - 1 } d z = 0 , \oint _ { C _ { 2 } } \frac { 1 } { z } d z = 0

三、柯西积分公式

1. 柯西积分公式

        不墨迹,直接把公式端上来

f ( z _ { 0 } ) = \frac { 1 } { 2 \pi i } \oint _ { C } \frac { f ( z ) } { z - z _ { 0 } } d z

        例:计算I = \oint _ { C } \frac { \sin z } { z ^ { 2 } + 1 } d z,其中C为圆周|z|=r>1。

        解:被积函数有奇点i和-i。

I = \oint _ { C _ { 1 } } \frac { \sin z } { z ^ { 2 } + 1 } d z + \oint _ { C _ { 2 } } \frac { \sin z } { z ^ { 2 } + 1 } d z

=\oint _ { C _ { 1 } } \frac { ( \sin z ) / ( z + i ) } { z - i } d z + \oint _ { C _ { 2 } } \frac { ( \sin z ) / ( z - i ) } { z + i } d z

= 2 \pi i \frac { \sin i } { i + i } + 2 \pi i \frac { \sin ( - i ) } { - i - i } = 2 \pi \sin i

        柯西积分公式的高阶形式

f ^ { ( n ) } ( z _ { 0 } ) = \frac { n ! } { 2 \pi i } \oint _ { C } \frac { f ( z ) } { ( z - z _ { 0 } ) ^ { n + 1 } } d z ( n = 1 , 2 , \cdots )

        其实本质上就是在原公式基础上两侧对z求n阶导数。

2. 莫雷拉定理(柯西积分定理的逆定理)

        定理(Morera):设f(z)在单连通区域D内连续,且对于D内任何一条简单闭曲线C都有\int _ { c } f ( z ) d z = 0,则f(z)在单连通区域D内解析。

        也就是说连续且积分与路径无关即解析。

3. 刘威尔定理与最大模定理

        定理(LiouVille):z平面上解析且有界的函数f(z)必为常数。

        定理(最大模):设f(z)是区域D内解析函数,且f(z)不为常数,则|f(z)|在D内打不到最大值。最大值只可能出现在边界上。

四、解析函数与调和函数的关系

        定义(调和函数):若二元实变函数u(x,y)在D内具有二阶连续偏导数且满足Laplace方程:

u_{xx}+v_{yy}=0

        则称u(x,y)为D内的一个调和函数,或者说u(x,y)在D内调和。

        若f(z)=u(x,y)+iv(x,y)在区域D内解析,则u(x,y)v(x,y)皆在D内调和。

        值得注意的是只能从解析推到调和,反过来不一定成立了。

        对于解析函数的调和性质,我们更关注的是解析函数满足的C-R方程。

        例:u=x^2+2xy-y^2,求以u为实部的解析函数f(z)

        解:可以采用不定积分法(梦回常微分方程)。

v _ { y } = 2 x + 2 y \Rightarrow v = 2 x y + y ^ { 2 } + \varphi ( x )

v _ { x } = 2 y + \varphi ^ { \prime } ( x ) = 2 y - 2 x

\varphi ^ { \prime } ( x ) = - 2 x , \varphi ( x ) = - x ^ { 2 } + c

v ( x , y ) = - x ^ { 2 } + 2 x y + y ^ { 2 } + c

f ( z ) = u + i v = ( 1 - i ) z ^ { 2 } + c ^ { \prime }

        其他有所谓的求导方法、曲线积分法等,本质上都是对C-R方程的应用!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值