本文讲述柯西积分定理,在此之前会介绍很多相关概念。
一、复积分的概念及性质
1. 有向曲线
设
其中和
在
上连续,且
,则称
为平面上的一条光滑曲线(其中
连续且不为0)。
关于闭曲线正向的定义:观察者顺着此方向沿着C前进一周,C的内部一直在观察者的左边。这就很像分析学中的诱导定向,具体例子如下图
2. 复积分的定义
设在C上有定义,C为从点A到点B的一条光滑有向曲线。
(1)分割
将分成n个小弧段:
(2)取近似
,作乘积
(3)求和
作和式,其中
,记
为
的长度,
(4)取极限
若无论什么样的分割都有
则称在C上可积,上述积分可记作
上述对复积分的定义和分析中是类似的,都是采用分割近似求和取极限的步骤。
3. 复积分存在的充要条件
必要条件:沿C有界。
充分条件:对于,需要
和
均在C上连续,且极限分别为
。
于是有如下定理:如果沿着曲线C连续且有界,则
可积,且
4. 复积分的性质
其实复积分的性质和实积分在很多情况下是一样的
- 设
,
,
- 设曲线C的长度为L,函数f(z)在C上满足
,则有积分估值定理
5. 复积分的参数方程(简化运算)
设曲线C的参数方程为:,则有
这里总结几类常见曲线的复数方程
- 连接
两点的线段参数方程为
- 过
两点的直线参数方程为
- 以
为中心,
为半径的正向圆周的参数方程为
例:计算,这里C表示以
为中心,
为半径的正向圆周,n为整数。
解:,
这是一条很重要的结论,后续柯西积分公式会反复使用这个结论:
该结果和圆心与半径没有任何关系!再看一个例子:
例:计算
解:,
二、柯西积分定理
研究的问题:什么条件下,积分与路径无关?此问题等价于沿任意的闭曲线积分是否等于零。
1. 定理一(柯西积分定理)
若在单连通区域D内解析,则对于D内任一条曲线C,都有
推论1
设在单连通区域D内解析,则在D内
的积分与路径无关,这时
推论2
设在闭合曲线C上及C内无奇点,则
原函数的想法:若在单连通区域D内解析,则在D内积分与积分路径无关;但当z在区域D内变化时,积分值也变化,并且该积分在D内确定了一个单值函数,记作
由此有如下定理。
2. 定理2
设在单连通区域D内解析,则
在D内解析,且
3. 定理3
任何两个原函数相差一个常数(听起来像废话)。
4. 定理4
设在单连通区域D内解析,
是
的一个原函数,则
这是牛顿-莱布尼兹公式在复积分的应用。在区域单连通而函数解析的情况下,可用此公式求复变函数的积分,特别是处处解析的函数的积分。
5. 定理5(复合闭路定理)
设D是由所围成的有界多连通区域,若
在D内及其边界
上解析,则
或
此式说明一个解析函数沿闭曲线积分,不因闭曲线在区域内作连续变形而改变它的积分值,只要在变形过程中曲线不经过的不解析点——闭路变形原理。
例:计算,
包含圆周|z|=1在内的任意正向简单闭曲线。
解:原式=
其中
三、柯西积分公式
1. 柯西积分公式
不墨迹,直接把公式端上来
例:计算,其中C为圆周|z|=r>1。
解:被积函数有奇点i和-i。
柯西积分公式的高阶形式
其实本质上就是在原公式基础上两侧对z求n阶导数。
2. 莫雷拉定理(柯西积分定理的逆定理)
定理(Morera):设在单连通区域D内连续,且对于D内任何一条简单闭曲线C都有
,则
在单连通区域D内解析。
也就是说连续且积分与路径无关即解析。
3. 刘威尔定理与最大模定理
定理(LiouVille):z平面上解析且有界的函数必为常数。
定理(最大模):设是区域D内解析函数,且
不为常数,则
在D内打不到最大值。最大值只可能出现在边界上。
四、解析函数与调和函数的关系
定义(调和函数):若二元实变函数在D内具有二阶连续偏导数且满足Laplace方程:
则称为D内的一个调和函数,或者说
在D内调和。
若在区域D内解析,则
和
皆在D内调和。
值得注意的是只能从解析推到调和,反过来不一定成立了。
对于解析函数的调和性质,我们更关注的是解析函数满足的C-R方程。
例:设,求以
为实部的解析函数
。
解:可以采用不定积分法(梦回常微分方程)。
其他有所谓的求导方法、曲线积分法等,本质上都是对C-R方程的应用!