kmeans python interation flag_kmeans的实现

function [Y,y]=kmeans(m,k,isRand) %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %kMeansCluster-Simple k-means clustering algorithm %Input: %m-required,maxtrix data %k-number of groups %isRand -optional,if using random initialzation isRand=1,otherwise input %any number(default),it will assign the first k data as initial centriods. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% if nargin<3     isRand=0; end if nargin<2     k=1; end [maxRow,maxCol]=size(m); Y=zeros(k,maxCol); if maxRow<=k     y=[m,1:maxRow] end %initial the values of centoid if isRand     p=randperm(size(m,1));     for i=1:k         c(i,:)=m(p(i),:);     end else     for i=1:k         c(i,:)=m(i,:);     end end temp=zeros(maxRow,1);  %initial as zero vector while 1     d=EuclideanDistance(m,c); %calculate objects-centrid distances     [z,g]=min(d,[],2); %find group maxtix g     if g==temp                       break;         %stop the interation     else         temp=g;        %copy graup maxtrix to temporary variable     end     for i=1:k         f=find(g==i);         if f            %only compute centroid if it is not emmpty             c(i,:)=mean(m(find(g==i),:),1);         end     end end Y=c; y=[m,g]; end

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值