python实现电影推荐系统_[转]使用Python MrJob的MapReduce实现电影推荐系统

最近发现一个很好玩的Python库,可以方便的使用在Python下编写MapReduce任务,直接使用Hadoop Streaming在Hadoop上跑。对于一般的Hadoop而言,如果任务需要大量的IO相关操作(如数据库查询、文件读写等),使用Python还是Java、C++,性能差别不大,而如果需要大量的数据运算,那可能Python会慢很多(语言级别上的慢),参考这里。

最常见的如日志分析、Query统计等,都可以直接用Python快速完成。

Python作为一种快速开发语言,优美、简洁的语法征服了很多人,现在很多的机器学习程序最初都是跑在Python上的(如知乎的推荐引擎),只有当规模大到一定程度才会转移到C或Java上。

本文会通过一个简单的电影推荐系统来介绍如何使用MrJOB。

首先,可能很多人对性能格外在意,可以先看这篇文章:

MrJOB的精简介绍

这里重点在于实现电影推荐的系统,所以对于MrJob本身的介绍会比较简略,够用即可,详细说明可以看官方文档。

首先,在Python中安装mrjob后,最基本的MapReduce任务很简单:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

frommrjob.jobimportMRJob

importre

WORD_RE=re.compile(r"[\w']+")

classMRWordFreqCount(MRJob):

defmapper(self,_,line):

forwordinWORD_RE.findall(line):

yieldword.lower(),1

defcombiner(self,word,counts):

yieldword,sum(counts)

defreducer(self,word,counts):

yieldword,sum(counts)

if__name__=='__main__':

MRWordFreqCount.run()

上面的代码中,有三个函数,mapper、combiner、reducer,作用和普通的Java版本相同:

mapper用来接收每一行的数据输入,对其进行处理返回一个key-value对;

combiner接收mapper输出的key-value对进行整合,把相同key的value作为数组输入处理后输出;

reducer和combiner的作用完全相同,不同之处在于combiner是对于单个mapper进行处理,而reducer是对整个任务(可能有很多mapper在执行)的key-value进行处理。它以各个combiner的输出作为输入。

更为详细的介绍,如分步任务、数据初始化等可以参考其这份官方文档。

电影推荐系统

假设我们现在有一个影视网站,每一个用户可以给电影评1到5分,现在我们需要计算每两个电影之间的相似度,其过程是:

对于任一电影A和B,我们能找出所有同时为A和B评分过的人;

根据这些人的评分,构建一个基于电影A的向量和一个基于电影B的向量;

根据这两个向量计算他们之间的相似度;

当有用户看过一部电影之后,我们给他推荐与之相似度最高的另一部电影;

你可以从这里下载一些开源的电影评分数据,我们使用的是1000个用户对1700部电影进行的100000万个评分数据,下载后的数据文件夹包含一个README,里面有对各个文件的详细介绍,鉴于我们只需要(user|movie|rating)数据,所以我们用Python把这些数据进行一些处理:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

#!/usr/python/env python

if__name__=='__main__':

user_items=[]

items=[]

withopen('u.data')asf:

forlineinf:

user_items.append(line.split('\t'))

withopen('u.item')asf:

forlineinf:

items.append(line.split('|'))

print'user_items[0] = ',user_items[0]

print'items[0] = ',items[0]

items_hash={}

foriinitems:

items_hash[i[0]]=i[1]

print'items_hash[1] = ',items_hash['1']

foruiinuser_items:

ui[1]=items_hash[ui[1]]

print'user_items[0] = ',user_items[0]

withopen('ratings.csv','w')asf:

foruiinuser_items:

f.write(ui[0]+'|'+ui[1]+'|'+ui[2]+'\n')

处理后的数据类大约似于这样:

YAML

1

2

3

4

5

6

7

8

9

196|Kolya(1996)|3

186|L.A.Confidential(1997)|3

22|Heavyweights(1994)|1

244|LegendsoftheFall(1994)|2

166|JackieBrown(1997)|1

298|Dr.Strangeloveor: How I Learned to Stop Worrying and Love the Bomb (1963)|4

115|HuntforRedOctober,The(1990)|2

253|JungleBook,The(1994)|5

305|Grease(1978)|3

皮尔逊相关系数

判断两个向量的相似度的方式有很多种,比如测量其欧氏距离、海明距离等,这里我们用皮尔逊相关系数来计算器相关性,该系数可以理解为两个向量之间夹角的余弦值,介于-1到1之间,绝对值越大相关性越强,公式为:

第一步,我们首先对把每个用户的所有评分聚合到一起,代码如下:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

#!/usr/bin/env python

# coding=utf-8

frommrjob.jobimportMRJob

classStep1(MRJob):

"""

第一步是聚合单个用户的下的所有评分数据

格式为:user_id, (item_count, rating_sum, [(item_id,rating)...])

"""

defgroup_by_user_rating(self,key,line):

"""

该mapper输出为:

17 70,3

35 21,1

49 19,2

49 21,1

"""

user_id,item_id,rating=line.split('|')

yielduser_id,(item_id,float(rating))

defcount_ratings_users_freq(self,user_id,values):

"""

该reducer输出为:

49 (3,7,[19,2 21,1 70,4])

"""

item_count=0

item_sum=0

final=[]

foritem_id,ratinginvalues:

item_count+=1

item_sum+=rating

final.append((item_id,rating))

yielduser_id,(item_count,item_sum,final)

defsteps(self):

return[self.mr(mapper=self.group_by_user_rating,

reducer=self.count_ratings_users_freq),]

if__name__=='__main__':

Step1.run()

使用命令 $python step1.py ratings.csv > result1.csv获得第一步的结果。

第二步,根据第一步聚合起来的用户评分,按照皮尔逊系数算法获得任一两个电影之间的相关性,代码及注释如下:

Python

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

#!/usr/bin/env python

#! coding=utf-8

frommrjob.jobimportMRJob

fromitertoolsimportcombinations

frommathimportsqrt

classStep2(MRJob):

defpairwise_items(self,user_id,values):

'''

本mapper使用step1的输出作为输入,把user_id丢弃掉不再使用

输出结果为 (item_1,item2),(rating_1,rating_2)

这里combinations(iterable,number)的作用是求某个集合的组合,

如combinations([1,2,3,4],2)就是在集合种找出任两个数的组合。

这个mapper是整个任务的性能瓶颈,这是因为combinations函数生成的数据

比较多,这么多的零散数据依次写回磁盘,IO操作过于频繁,可以用写一个

Combiner来紧接着mapper做一些聚合操作(和Reducer相同),由Combiner

把数据写回磁盘,该Combiner也可以用C库来实现,由Python调用。

'''

# 这里由于step1是分开的,把数据dump到文件result1.csv中,所以读取的时候

# 需要按照字符串处理,如果step1和step2在同一个job内完成,则直接可以去掉

# 这一行代码,在同一个job内完成参见steps函数的使用说明。

values=eval(values.split('\t')[1])

item_count,item_sum,ratings=values

foritem1,item2incombinations(ratings,2):

yield(item1[0],item2[0]),(item1[1],item2[1])

defcalculate_similarity(self,pair_key,lines):

'''

(Movie A,Movie B)作为Key,(A rating,B rating)作为该reducer的输入,

每一次输入属于同一个用户,所有当两个key相同时,代表他们两个都看了A和B,所以

按照这些所有都看了A、B的人的评分作为向量,计算A、B的皮尔逊系数。

'''

sum_xx,sum_xy,sum_yy,sum_x,sum_y,n=(0.0,0.0,0.0,0.0,0.0,0)

item_pair,co_ratings=pair_key,lines

item_xname,item_yname=item_pair

foritem_x,item_yinco_ratings:

sum_xx+=item_x*item_x

sum_yy+=item_y*item_y

sum_xy+=item_x*item_y

sum_y+=item_y

sum_x+=item_x

n+=1

similarity=self.normalized_correlation(n,sum_xy,sum_x,sum_y,sum_xx,sum_yy)

yield(item_xname,item_yname),(similarity,n)

defsteps(self):

return[self.mr(mapper=self.pairwise_items,

reducer=self.calculate_similarity),]

defnormalized_correlation(self,n,sum_xy,sum_x,sum_y,sum_xx,sum_yy):

numerator=(n*sum_xy-sum_x*sum_y)

denominator=sqrt(n*sum_xx-sum_x*sum_x)*sqrt(n*sum_yy-sum_y*sum_y)

similarity=numerator/denominator

returnsimilarity

if__name__=='__main__':

Step2.run()

使用命令 $python step2.py result1.csv > result2.csv获得第二步的结果。

获得结果集示例:

[Movie A, Movie B] [similarity, rating count]

Python

1

2

3

4

5

6

7

8

9

10

11

["Star Trek VI: The Undiscovered Country (1991)","Star Trek: Generations (1994)"][0.31762191045234545,93]

["Star Trek VI: The Undiscovered Country (1991)","Star Trek: The Motion Picture (1979)"][0.4632318663542742,96]

["Star Trek VI: The Undiscovered Country (1991)","Star Trek: The Wrath of Khan (1982)"][0.44969297939248015,148]

["Star Trek VI: The Undiscovered Country (1991)","Star Wars (1977)"][0.08625580124837125,151]

["Star Trek VI: The Undiscovered Country (1991)","Stargate (1994)"][0.30431878197511564,94]

["Star Trek VI: The Undiscovered Country (1991)","Stars Fell on Henrietta, The (1995)"][1.0,2]

["Star Trek VI: The Undiscovered Country (1991)","Starship Troopers (1997)"][0.14969005091372395,59]

["Star Trek VI: The Undiscovered Country (1991)","Steal Big, Steal Little (1995)"][0.74535599249993,5]

["Star Trek VI: The Undiscovered Country (1991)","Stealing Beauty (1996)"][-0.4879500364742666,10]

["Star Trek VI: The Undiscovered Country (1991)","Steel (1997)"][1.0,2]

["Star Trek VI: The Undiscovered Country (1991)","Stephen King's The Langoliers (1995)"][-0.11470786693528087,16]

可以看到结果还是具有一定的实际价值的,需要注意的是,Stars Fell on Henrietta, The (1995) 这部电影是1.0,也就是完全相关,但是由于只有两个人同时对他们进行了评价,所以结果并非全都很正确,这里还要考虑多少人进行了评价。

结语

本文的内容来自于参考资料中的博客,博主仅做了整理工作,有任何问题可以和我交流。需要指出的是,类似于本文中的电影推荐仅仅是众多推荐算法中一种,可以说是对物品进行相似度判断,实际上也可以根据用户进行用户相似度判断,相似的用户总是喜欢相同的电影,这在实践中效果更好一点,也更容易根据社交关系进一步挖掘。

参考资料:http://aimotion.blogspot.com.br/2012/08/introduction-to-recommendations-with.html

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值