自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(1687)
  • 资源 (4)
  • 收藏
  • 关注

原创 超强AI教学智能体!出题阅卷&教学分析一键搞定!

⑯在去除Markdown格式节点后添加已经定义好的mysql查询工具,host填写你要连接的数据库ip,user填写用户名,password填写密码,database填写数据库名称,port填写端口号,query选择去除Markdown格式节点的结果,不返回内容。利用我给你的已知信息,生成可执行的SQL插入到数据库,将已知信息基于表格字段格式要求自行转换格式,其次要把对应字段的完整内容插入数据库中,除SQL语句以外不输出任何其他内容。⑦在指定回复1节点后添加知识库检索节点,选择已创建的知识库。

2025-10-20 17:31:20 498

原创 RAGFlow+Dify搭建多模态文档企业知识库

添加标签后,匹配会有分数加成,且标签越多,加成越多。:在知识检索前对提问进行优化,将关键字式的提问完善成一个完整的问题,缩小需要检索的知识库范围,提高检索速度和准确度。:通过查看工具的“日志与标注”,点击需要查看的对话,再点击具体的了解答复,可以查看congtext里的知识检索结果。相较于RAGFlow的“聊天”功能,Dify的提示词更为灵活,易于配置,避免了不可控的隐藏提示词导致的输出问题。:“运行”聊天工具后,点击“知识检索”的“运行结果”,再点击content的内容,即可查看详情。

2025-10-12 07:14:36 772

原创 大模型 | RAG 中的混合搜索:使用组合技术增强信息检索

AI大模型作为人工智能领域的重要技术突破,正成为推动各行各业创新和转型的关键力量。抓住AI大模型的风口,掌握AI大模型的知识和技能将变得越来越重要。学习AI大模型是一个系统的过程,需要从基础开始,逐步深入到更高级的技术。这里给大家精心整理了一份全面的AI大模型学习资源,包括:AI大模型全套学习路线图(从入门到实战)、精品AI大模型学习书籍手册、视频教程、实战学习、面试题等,资料免费分享!·  2024-08-20 09:53:30 发布。

2025-10-12 07:05:58 739

原创 腾讯云通过ES实现rag 混合检索功能

闪亮登场,以AI搜索增强版内核为底座,进一步优化了对全文与向量混合搜索的能力支持,从原始文档解析、向量化等原子能力,到查询性能、混合排序效率、搜索结果精准度等提供了全方位的支持和优化,让搜索有了更多想象空间。本身支持常用的中文分词,如IK 分词、QQ分词,同时支持用户上传自定义插件,在内核层面,针对典型向量场景特点做了深度优化,例如分片架构优化,查询并行化,lucene查询缓存锁改造等,10亿级向量检索平均响应延迟控制在毫秒级,整体查询性能提升3 - 10倍,极大程度的提升了混合搜索的效率。

2025-10-11 23:38:59 950

原创 告别知识库“大海捞针”!Dify元数据过滤实现RAG精准检索,效率提升2倍

元数据本质上是"关于数据的数据",就像图书馆里每本书的标签一样。•文档类型:技术手册、用户指南、FAQ等•部门归属:市场部、技术部、人事部•保密级别:公开、内部、机密•创建时间:2024年1月、最近更新等•适用场景:新手入门、高级配置、故障排除想象一下,如果你的知识库里有5000份文档,没有元数据就像一个没有分类的巨大仓库,找东西全靠运气。有了元数据,就像给每个文档贴上了精准的标签,AI可以瞬间定位到最相关的内容。进入元数据管理:点击右上角的"元数据"按钮添加自定义字段。

2025-10-11 19:09:42 938

原创 AI大模型幻觉终结者!开源RAGflow成企业智能问答首选

而 RAG(检索增强生成)技术,正是解决这个问题的“镊子”——它让大模型从“闭卷考试”变成“开 卷考试”,用企业自己的知识库当“课本”,回答自然更准、更新。知识入库线的四个模 块,就是干这个的。这两条线就像工厂的“原料处理线”和“产品组装线”:知识入库线把“原料”(文档)变成“零 件”(知识块),问题解答线把“零件”(知识块)组装成“产品”(答案)。——计算用户问题向量和文档向量的夹角,夹角越小,相似度越高(比如“主轴异响”和“轴承磨损”的夹角是10度,和“电机故障”的夹角是30度,前者更相 关)。

2025-10-07 07:34:36 680

原创 再也不用担心 ssl 证书过期了,mkcert 一键生成本地 SSL 证书,搞定 https 访问

Github 斩获Star,究竟为什么,竟让这么一个小工具如此火爆。让我们一起看看吧。

2025-10-06 14:54:17 468

转载 炸裂!多格式文档图表秒变URL,AI回答从此图文并茂

Knowledge Pipeline是Dify 1.9.0引入的全新知识处理架构,它将传统的文档处理流程模块化,让用户可以像搭积木一样自由组合各种处理节点。文档上传MinerU解析图像提取URL存储Parent-Child分块知识库索引混合输出Dify 1.9.0的Knowledge Pipeline功能真正实现了多模态RAG的突破,通过MinerU工具的强大解析能力,让AI助手具备了"看图说话"的能力。无论是技术文档、学术论文还是商业报告,都能得到完整准确的理解和回答。

2025-10-04 07:32:38 143

原创 解锁高难度PDF!MinerU部署保姆教程 + Dify联合解析《少年百科》

复杂排版 PDF 的解析能力,已成为衡量企业文档自动化处理水平的重要指标之一。然而,在实际操作中,大多数企业并不具备自主研发 PDF 解析系统的能力,更多依赖于开源工具来完成这一任务。因此,选择一款功能强大、适配性强的 PDF 解析工具,显得尤为关键。在本文中,笔者实测了七款主流的 PDF 解析工具(包括 MinerU、Doc2X、maker、Nanonets-OCR-s、olmOCR、surya 等),综合对比其在复杂排版文档中的表现后发现,MinerU 在多个维度上最贴合笔者的真实工作场景的需求。

2025-10-03 23:45:12 936

原创 Dify实战案例:智能客服怎么做到图文并茂?

最近在推进 dify 智能客服应用时,客服团队又提出了一个新需求:“我们的用户手册都是图文并茂的,有些操作单靠文字根本讲不清楚,能不能也让智能客服的回答里带上图片?这个问题其实在很多企业的知识库中都存在。纯文字的知识点,在面对设备操作、软件配置、页面引导等任务时,往往力不从心。

2025-10-03 23:17:13 383

原创 Dify图文回复

节点,下载图片,在回复节点展示图文;如果不包含图片,回复节点只展示文本。对用户的问题进行回答,当回答中包含图片时,将图片在聊天窗口展示出来。节点就是根据用户的输入,从知识库中匹配出最适合的片段,交给下一个。节点中检索出的知识片段,生成符合用户问题的回答。不是本小节重点内容,我们将在之后的小节中详细讲解。的前端展示页面应该是解析的富文本,所以也可以在。下载图片,用户在最后的回复节点中展示。节点就是根据用户的输入(问题)和从。字段,如果包含图片,则将图片。的图片展示语法,也可以展示。根据群友的补充,也可以在。

2025-10-03 23:11:31 526

原创 AI重塑销售管理,突破“人”的能力边界|纷享AI主题研讨会宁波站圆满落幕

3月28日,纷享销客主题研讨会在宁波成功举行,70+当地企业CIO、数字化负责人齐聚一堂,共同探讨AI技术驱动销售增长的新范式。纷享销客CRM产品VP刘抗、浙江分公司生态渠道总监孙石磊现场发表主题演讲,系统性阐述了企业级AI销售管理体系与落地路径,并与在场嘉宾开展深入交流。

2025-10-02 22:05:21 907

原创 把能力建设在组织上,纷享销客销售Agent助力企业多赢一单

当数字化转型的浪潮席卷全球经济,销售行业却仍在经历着「信息黑洞」与「人效天花板」的双重困境:据统计,68%的销售团队因信息滞后导致丢单率激增,27%的商机流失源于关键对话的误判。此刻,每个销售组织都站在选择的十字路口:是继续用血肉之躯对抗指数爆炸的信息洪流,还是让AI成为跨越认知边界的诺亚方舟?「AI实战派」直播第一期,纷享销客CRM产品VP刘抗从销售人员和销售管理者的视角出发,剖析AI如何破解工作中的痛点,并通过销售Agent的三大核心功能,揭示如何利用AI多拿订单。

2025-10-02 22:03:42 635

原创 开源向量数据库比较:Chroma, Milvus, Faiss,Weaviate

向量数据库是一种将数据存储为高维向量的数据库,高维向量是特征或属性的数学表示。每个向量都有一定数量的维度,根据数据的复杂性和粒度,可以从数十到数千不等。向量通常是通过对原始数据(如文本、图像、音频、视频等)应用某种转换或嵌入函数来生成的。嵌入函数可以基于各种方法,如机器学习模型、词嵌入和特征提取算法。向量数据库的主要优点是,它允许基于数据的向量距离或相似性进行快速和准确的相似性搜索和检索。

2025-10-02 20:10:31 627

原创 向量数据库前沿:Faiss 向量数据库的配置与使用

扩展到三维向量空间中(向量的范围是` [0, 1]`),两个向量/点之间最大距离为 `√3`,并不是 `√2`,所以直接套用公式,可能会出现负数得分,在 `N` 维向量空间下,两点的最大距离是 `√N`,所以出现负数的概率大大增加。由于向量数据库存储的是向量,因此需要传入一个。`similarity_search_with_score()`:携带得分的相似性搜索,参数和 `similarity_search()` 函数保持一致,只是会返回得分,这里的得分并不是相似性得分,而是欧几里得距离。

2025-10-02 19:47:46 895

原创 如何让AI“看懂”网页?拆解 Browser-Use 的三大核心技术模块

现阶段的 BrowserUse 个人认为它主要是有几个创新点,一个是开创性地构建带标识 Dom 树结构的方式来辅助大模型去理解网页结构和内容,并能通过 index 去精确定位到 clickable 元素,另一个是它串起了 LLM 对于网页内容的理解、next goal 思考、决策路径、action 行动的流程。其本质上还是使用 LLM + Playwright 来实现 AI 操作浏览器,而未来如果基础模型的多模态能力能够有大幅度的提升和完善,那么或许可以直接通过理解复杂的视觉内容来更进一步理解网页内容!

2025-10-02 10:24:25 802

原创 oLLM8GB显卡也能跑800亿参数大模型!千元硬件玩转10万token上下文

我用RTX 3060(12GB显存,比3060 Ti多4GB)跑Qwen3-Next-80B,处理10万token的中文小说摘要,显存占用8.2GB,SSD用了210GB,生成速度0.6 token/秒,花15分钟生成了2000字的摘要,比用在线大模型API省钱多了。1. 中文Tokenizer适配:国产大模型的分词器(Tokenizer)和英文模型不同,中文单字、词语的token长度更短,KV缓存的体积也更小——同样是10万token上下文,中文文本的KV缓存比英文少30%,SSD占用进一步降低;

2025-10-01 11:32:10 687

原创 Lite-MCP-Client

Lite-MCP-Client是一个基于命令行的轻量级MCP客户端工具,可以连接到多种MCP(Model-Chat-Prompt)服务器,帮助用户轻松调用服务器提供的工具、资源和提示模板。该客户端支持与大型语言模型集成,实现智能化查询和处理。

2025-10-01 10:48:05 925

原创 Oumi:开源的AI模型一站式开发平台,涵盖训练、评估和部署模型

Oumi 是一个完全开源的 AI 平台,简化从数据准备、模型训练到评估和部署的整个生命周期。

2025-10-01 07:10:29 702

原创 从零开始构建AI Agent评估体系:12种LangSmith评估方法详解

通过探索使用 LangSmith 进行 AI Agent 评估的十二种不同技术,我们构建了一个全面的评估框架。每种技术都解决了 AI 系统评估的特定方面,从基本的输出正确性到复杂的行为分析。技术分类与应用指南基于标准答案的评估方法包括精确匹配(适用于确定性答案,如事实、日期或计算)、非结构化问答(适用于开放式问题,其中语义正确性比字面匹配更重要)、结构化数据比较(适用于 JSON 提取和数据转换任务)、动态标准答案(适用于基于实时变化数据的系统)。

2025-09-27 19:11:39 1024

原创 Coze实战:根据知识点/错题/文档智能生成试卷

添加一个<选择器>节点,加一个分支,变为三个分支,这里依次输入file和image变量,第三个即为content,不用输入。工作流的整体概览和搭建思路如图,主要是选择输入类型 - AI出题 - 整合成文档,我就以这三大部分给大家讲解。这一部分讲解如何进入空间并新建一个工作流,熟悉的朋友可以跳过,直接去03工作流搭建部分。点击确认进入工作流界面,自带开始和结束节点,通过添加一个个节点来进行搭建。3. 输入名称和描述,注意名称只能用英文和英文符号,描述可以写中文。,输入读取的数据,填写系统提示词。

2025-09-27 16:24:14 908

原创 别手动搭n8n了,n8n邪修出手,1个mcp工具让搭建部署全自动

这两天在研究n8n,我发现,n8n的数据,包括工作流的配置,全部都是json格式的,这意味什么?过程非常顺利哈,就是第一遍它没有自动帮我把工作流创建到我的n8n.然后用提示词强调了一下,接着它就调用工具把工作流部署到我的n8n了,看到这里生成了工作流ID说明成功了。因为我抓的网址是动态加载数据的,这个爬取还是有一定难度的,要使用模拟浏览器什么的。不过,我只测试了一两遍,不够说明哈,各位道友,有兴趣的,可以试试咯。你看,AI会自动调用工具,了解n8n的使用,以及各个节点的功能,找到适合的节点进行工作流创建。

2025-09-27 07:41:44 823

原创 瓴羊推出阿里巴巴首批企业级Agent,超级客服专家上岗

销售任务规划Agent、线索清洗Agent、销售策略Agent和到店邀约Agent正是为了解决汽车销售的全流程痛点而生的,这四个Agent可以根据业务目标为销售进行初步的线索筛选,检索出销售应该优先处理跟进的线索,并且根据销售的需求,进行AI电话外呼或根据用户画像推荐销售话术,自动打给消费者邀约试驾和沟通购车意向,等消费者试驾完成后,试驾报告Agent会再进行电话回访,并且生成消费者的试驾报告,提供销售评估后续的销售策略。具体而言,他们40%的时间用于电话沟通,以了解用户的偏好和购车意向。

2025-09-26 19:01:14 698

原创 Agno 架构介绍:高性 Multi-agent 系统框架深度解析

性能领先:Agno 在实例化速度和内存占用上大幅领先其他框架推理优先:将推理作为核心能力,而非后期添加的功能生产就绪## 内置 FastAPI 路由api = AgentAPI(agent=agent) # 0 到生产部署4. 模型无关:统一接口支持所有主流模型提供商5. 原生多模态:不需要额外配置即可处理多种媒体类型Agno 作为新一代多智能体系统框架,通过其独特的架构设计和技术选择,在性能、易用性和功能完整性之间找到了优秀的平衡点。极致的性能表现:微秒级实例化和千字节级内存占用推理能力内置。

2025-09-25 15:08:19 808

原创 uv,下一代Python包管理工具

什么是uvuv(Universal Virtual)是由Astral团队(知名Python工具Ruff的开发者)推出的下一代Python包管理工具,使用Rust编写。它集成了包管理、虚拟环境、依赖解析、Python版本控制等功能,它聚焦于三个关键点:性能、安全性、以及现代化开发流程的兼容性。

2025-09-24 17:57:15 454

原创 探索Python包项目管理新境界:Poetry工具详解

它不仅能帮助我们轻松管理项目的依赖包和版本,还能有效分离开发环境和生产环境,确保项目的稳定性和一致性。对于每个项目,Poetry都会创建一个独立的虚拟环境,这可以有效避免不同项目间的包版本冲突问题。:pyproject.toml是Poetry的配置文件,其作用类似于Node.js中的package.json,用于集中记录项目的各项配置信息。命令可以查看项目的所有依赖,包括开发依赖和生产依赖,以及它们的详细信息。参数,可以明确标识开发依赖,确保开发环境使用明确的测试工具,而不会干扰到生产环境的稳定性。

2025-09-24 17:20:37 534

原创 腾讯大模型2面:vLLM问的太细了...

又一位学员报喜!,年包30W左右,薪资怒涨50%!为了助力秋招,,我将手把手带大家实战一个真实企业级项目,此外也增加了多模态专题【面试常考】。准备秋招的小伙伴们,卷起来吧!vLLM V1 引擎通过优化其核心引擎循环,将输入处理并行化,并引入了分段式 CUDA 图,从而实现了更灵活、动态的执行模型,显著降低了在线服务的延迟(TTFT 和 TPOT),同时保持了高吞吐量。其设计目标是确保 GPU 不闲置,通过 API 服务器和 EngineCore 之间的协作来高效调度和执行任务。

2025-09-17 13:44:13 606

原创 得助智能保险知识图谱,助力永安保险实现智能化知识管理

知识图谱的内涵更加丰富,是知识的另一种表现形式,中关村科金打造的得助知识图谱可为企业提供多源异构数据知识整合服务,已广泛应用于金融、保险、制造、医美等领域积累了10+行业知识,KBQA知识问答准确率超过90%,实现百万级图计算秒级响应。),从知识库中已有的实体关系数据出发、经计算机推理,建立实体间的新关联,从而拓展和丰富知识网络,通过知识推理能发现新的知识,简而言之通过各种方法获取新的知识或者结论。的抽取效率,我们开发了自动标注工具(如下图所示),按照上述三种维度进行数据自动标注,标注的数据按照。

2025-09-15 11:21:32 743

原创 LMCache:KV缓存管理

从开源到企业,从Red Hat到Kubernetes再到NVIDIA和Moonshot,表现最好的LLM推理堆栈都在押注LMCache。如果你正在构建可扩展、高速或成本效益高的系统,那么可能也是时候这样做。无论你是在运行一个长上下文聊天机器人、文档摘要器还是多租户API后端,性能都取决于你在计算节点之间如何管理KV缓存。现代基于Transformer的LLM如LLaMA、Mixtral和DeepSeek需要持久化的注意力键/值缓存来高效地处理长提示。和。这就是。

2025-09-14 23:25:40 1067

原创 使用 LMCache + vLLM 提升 AI 速度并降低 GPU 成本

LMCache 是 vLLM 等运行大型 AI 模型的系统的小助手。它保存这些被称为KV 缓存的东西——基本上是 AI 阅读文本后的便利贴。LMCache 不会每次都涂写新的笔记,而是将它们放在手边,这样你的 AI 就不会浪费时间或消耗昂贵的 GPU 算力。你的 AI 开始以惊人的速度回答问题——有时快七倍,不开玩笑。它使用更少的 GPU 资源,所以你不会因为云账单而哭泣。它非常适合聊天机器人或应用程序,在这些应用中,你会一直看到相同的文本,比如搜索结果或冗长的设置消息。

2025-09-14 23:16:24 1099

原创 OpenRLHF:面向超大语言模型的高性能RLHF训练框架

OpenRLHF 是由 OpenLLMAI 团队于2024年推出的开源强化学习人类反馈(RLHF)框架,旨在解决大语言模型(LLM)对齐训练中的多模型协调瓶颈与超大规模扩展难题。人类偏好胜率:在Anthropic HH数据集上,OpenRLHF微调的Llama3-70B模型胜率达 79.3%,超越基础SFT模型 15.2%。模型协调复杂:需同步管理行动者(Actor)、评价者(Critic)、奖励模型(RM)、参考模型(Reference)四个模型,GPU资源争夺严重。

2025-09-12 07:19:13 1099

原创 【开源】开源神器LiteLLM如何成为AI开发者的效率密码?21.1K star,零代码调用百种大模型!

在AI应用开发中,调用不同大模型(如OpenAI、Azure、Anthropic等)的API接口碎片化问题长期存在——每个平台的接口格式、参数命名、错误处理逻辑均不兼容,开发者不得不为每个模型单独编写适配代码,维护成本极高。而开源工具LiteLLM的诞生,彻底终结了这一痛点,它以统一接口+智能管理为核心,让多模型调用变得像点外卖一样简单。- 成本控制:相比UnionLLM的粗放式管理,LiteLLM支持按项目隔离预算,避免资源浪费。1. 企业级AI中台:统一管理多个业务线的模型调用,隔离数据与权限。

2025-09-10 16:10:32 418

原创 Dify搭建AI图片生成助手中的坑!

使用搭建 AI 图片生成助手并不是什么难事,而且不需要你会编程知识,也能轻松实现。所以,接下来本文就带你来避开这些坑。

2025-09-04 14:43:58 920

原创 dify案例分享-国内首发!手把手教你用Dify调用Nano BananaAI画图

今天主要带大家了解并实现了基于 Dify 工作流构建 Nano Banana(Gemini 2.5 Flash Image)图像生成与编辑系统的完整流程,该系统以开源的 nano_banana 插件为核心,结合 Dify 平台的工作流逻辑和 LLM 提示词优化能力,形成了一套覆盖文生图、图生图及多风格转换的图像生成方案。我们看一下生成的效果。今天的分享就到这里结束了,我们下一篇文章见。这个地方主要是目的是AI 生成的提示词内容比较多,我们关心的是它的核心系统提示词,我用代码正则表达式提取这些核心提示词。

2025-09-03 22:49:25 924

原创 Xget:为您的开发工作流解锁极致速度

在当今快节奏的开发环境中,时间就是生命。无论是克隆代码存储库、下载软件包、拉取容器镜像,还是与 AI 模型交互,每一个延迟都会拖慢您的开发进度。您是否曾因git clone速度缓慢而感到沮丧?是否曾因下载大型数据集或模型而耗费数小时?现在,是时候告别等待了!隆重介绍——一款超高性能、安全、一站式的开源资源获取加速引擎。Xget 旨在彻底改变您的开发工作流,为您带来闪电般的下载和操作体验。无需部署,直接使用公共实例感受飞一般的速度!

2025-09-02 15:02:12 940

原创 如何评价 Kimi 开源的推理平台 Mooncake?对行业有什么影响?

Mooncake 这篇论文核心是为了解决 GPU 资源有限且请求文本较长的场景,提出的 early-rejection 方案可以参考一下。具体实际应用场景下的大模型推理分布式部署,还需要结合业务情况来具体优化,但是常见的优化手段,如 kv cache 量化、P 到 D 按 layer 传输、prefix cache 命中率提升这些都是必须的。另外包括异构场景下,P 和 D 不同的分布式配置,会引入什么问题,又会有哪些优化,论文并没有涉及。发布于 2025-05-12 21:46。

2025-08-30 22:38:10 913

原创 大模型推理显卡对比:Tesla P40 vs Titan RTX vs RTX A3000

本文中对比的三款显卡显存容量不同。P40和Titan RTX拥有24GB显存,而RTX A3000为12GB。选择时需根据您要运行的模型大小(尤其是量化后的大小)来决定12GB是否足够。在选择用于大模型本地推理的显卡时,显存容量、计算性能、功耗和使用便利性是关键考量因素。这三款拥有大显存的专业/高性能显卡进行详细对比,帮助您做出明智的选择。

2025-08-30 14:05:26 1657

原创 容联云语音坐席代理:懂业务的Agent,让金融对话更有温度与效率

在保险外呼中,重复的福利活动、保单推销被秒挂断……在通话中,坐席代理实时分析用户语气、提问内容,当探测到用户不悦,则不会继续傻瓜式推荐,快速播放结束语。基于此,容联云打破传统语音交互的局限,依托大模型技术与金融业务逻辑的深度融合,推出「大模型语音坐席代理」,以“更懂金融、更懂客户”为核心,让Agent真正成为金融营销服中的“金牌坐席”容联云坐席代理能够识别用户负面情绪,自动切换分期策略话术,在传递催收信息的同时,充分理解用户的需求和情绪,使催收工作更具温度和效果,既提高催收成功率,又维护良好的客户关系。

2025-08-28 13:14:27 649

原创 视觉大模型Qwen2.5-VL-7B菜品大模型训练过程及成果

同样通过调用第三方大模型获取每个类别(菜品)的简介以及对应的食谱,这类数据在全参数训练或微调时能够保持模型的基本语言理解能力以及增强泛化能力,在构建训练数据时按比例加入可提升训练效果。干锅土豆片的做法步骤如下:1. 土豆去皮后切成均匀薄片,用清水冲洗去多余淀粉,沥干备用。2. 锅中倒入适量油,放入花椒和干辣椒,小火慢炸出香味,不要炸糊。3. 下土豆片,大火翻炒至表面微微焦黄,土豆片变软。4. 淋入辣椒油,继续翻炒均匀,让土豆片充分裹上红亮的辣油和香料。5. 加入切段的青蒜,快速翻匀,撒适量盐调味。

2025-08-28 09:14:26 1050

原创 Excel MCP Server:用AI轻松玩转Excel,解放你的生产力!

今天要给你们介绍一个超实用、超硬核的项目——!这个由开发者Haris Musa打造的开源神器,简直是Excel爱好者和AI开发者的福音!无需安装Microsoft Excel,就能用AI轻松搞定Excel文件的创建、编辑和数据分析,话不多说,赶紧来看看它的魅力吧!

2025-08-27 17:36:22 1018

2007年下半年系统分析师考试试题分析.doc

2007年下半年系统分析师考试试题分析.doc

2007-11-21

2007年下半年系统分析师上午试卷.doc

2007年下半年系统分析师上午试卷.doc

2007-11-21

2007年下半年系统分析师下午试卷Ⅰ.doc

2007年下半年系统分析师下午试卷Ⅰ.doc

2007-11-21

2007年下半年系统分析师下午试卷Ⅱ.doc

2007年下半年系统分析师下午试卷Ⅱ.doc

2007-11-21

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除