python怎么降维_【Python算法】常用降维方法-常用降维方法解读

本文详细介绍了Python中几种常见的降维方法,包括PCA(主成分分析)、LDA(线性判别分析)、LLE(局部线性嵌入)和拉普拉斯特征映射。PCA通过最大化方差保留数据信息,LDA旨在使降维后的数据易于区分,LLE保持数据的流形结构,而拉普拉斯特征映射则通过保持局部关系来反映数据的内在结构。每种方法有其优缺点,适用于不同的数据和场景。
摘要由CSDN通过智能技术生成

常用降维方法-常用降维方法解读

1. 引言

机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中。降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式。 y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的)。f可能是显式的或隐式的、线性的或非线性的。

目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据。之所以使用降维后的数据表示是因为在原始的高维空间中,包含有冗余信息以及噪音信息,在实际应用例如图像识别中造成了误差,降低了准确率;而通过降维,我们希望减少 冗余信息 所造成的误差,提高识别(或其他应用)的精度。又或者希望通过降维算法来寻找数据内部的本质结构特征。

在很多算法中,降维算法成为了数据预处理的一部分,如PCA。事实上,有一些算法如果没有降维预处理,其实是很难得到很好的效果的。

2. 主成分分析算法(PCA)

Principal Component Analysis(PCA)是最常用的线性降维方法,它的目标是通过某种线性投影,将高维的数据映射到低维的空间中表示,并期望在所投影的维度上数据的方差最大,以此使用较少的数据维度,同时保留住较多的原数据点的特性。

通俗的理解,如果把所有的点都映射到一起,那么几乎所有的信息(如点和点之间的距离关系)都丢失了,而如果映射后方差尽可能的大,那么数据点则会 分散开来,以此来保留更多的信息。可以证明,PCA是丢失原始数据信息最少的一种线性降维方式。(实际上就是最接近原始数据,但是PCA并不试图去探索数 据内在结构)

设 n 维向量w

  • 0
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PCA(Principal Component Analysis)是一种常用算法,它通过线性变换将高维数据映射到低维空间中,且尽可能多地保留原始数据的信息。PCA的核心思想是将原始数据投影到新的坐标系上,新坐标系的选择是使得投影后数据方差最大的方向,也就是数据的主成分方向。以下是PCA维的步骤: 1. 数据预处理:对数据进行标准化处理,使得每个特征的均值为0,方差为1。 2. 计算协方差矩阵:协方差矩阵反映了特征之间的相关性,计算公式为:$\Sigma=\frac{1}{n-1}(X-\bar{X})^{T}(X-\bar{X})$,其中 $X$ 为 $n$ 行 $m$ 列的数据矩阵,$\bar{X}$ 为 $m$ 维向量,表示每一列的均值。 3. 计算特征值和特征向量:对协方差矩阵进行特征值分解,得到特征值和特征向量。 4. 选取主成分:将特征值按照从大到小的顺序排列,选择前 $k$ 个特征值对应的特征向量,组成新的 $k$ 维特征空间。 5. 投影到新的特征空间:将原始数据投影到新的 $k$ 维特征空间中,得到维后的数据。 下面是Python实现PCA维的代码: ```python import numpy as np class PCA: def __init__(self, n_components): self.n_components = n_components def fit_transform(self, X): # 数据预处理 X_std = (X - np.mean(X, axis=0)) / np.std(X, axis=0) # 计算协方差矩阵 cov_mat = np.cov(X_std.T) # 计算特征值和特征向量 eigenvals, eigenvecs = np.linalg.eig(cov_mat) # 选取前n个特征向量 idx = eigenvals.argsort()[::-1] eigenvecs = eigenvecs[:, idx][:, :self.n_components] # 投影到新的特征空间 X_new = np.dot(X_std, eigenvecs) return X_new ``` 使用示例: ```python import numpy as np from sklearn.datasets import load_iris # 加载数据 iris = load_iris() X = iris.data # PCA维 pca = PCA(n_components=2) X_new = pca.fit_transform(X) # 可视化 import matplotlib.pyplot as plt plt.scatter(X_new[:,0], X_new[:,1], c=iris.target) plt.show() ``` 这里使用了鸢尾花数据集进行演示,将原始数据从4维到了2维,并将结果可视化出来。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值