c++矩阵转置_线性代数(Gelbert)对称矩阵

    终于不用住公司了,虽然不会像之前更新的那么连贯、快。上接《傅里叶级数》。

    这一系列前面几篇中,虽然我不记得是哪集篇了,经常提到对称矩阵的特征值一定是实数,然后一直没证明过。虽然Gelbert在这一课中也只是大略的说了下证明(不够完整,很大一部分没有证明),然后随随便便带过了谱定理也就是主轴定理。只好我自己杜撰点。

    矩阵的特征值和特征向量可以一定程度上反应矩阵的特性,如马尔科夫矩阵有一个特征值是1。长话短说,对称阵有两个性质:

            一、特征值一定是实数;

            二、一定可以找出一对正交(也就是垂直)的特征向量。

    参考《线性代数(Gelbert)---特征向量》结尾处,以及方程组求解(如2、3、4次方程求根公式)可以看出对于对称矩阵,如果特征值是复数,那一定是共轭的特征值成对儿出现(如果看不出来,可以找我讨论)。特征值既然共轭,那特征向量一定也共轭(代入特征值很明显):

Ax = λx

    λ* = conjugate(λ) 的 x 为 x*= conjugate(x),证明的思路就是把λ和λ*建立联系,然后证明它们相等。为了建立联系,先在等式两端同乘x*:

x*TAx = x*Tλx 

    因为共轭:

Ax* = λ*x*

    对x*A转置:

(Ax*)T = (x*)TAT 

    由于是对称矩阵,有A = AT

(x*)TAT = x*TA = (λ*x*)T = λ*x*T

    于是:

x*TAx = λ* x*Tx = x*Tλx

    可以发现如果x*Tx不为0,则λ* = λ,一个数的共轭等于自身,那么它的虚部只能为0,所以λ是实数。

    现在,需要证明x*Tx不为0。如果每个x分量的实部为a,虚部为b,由于特征向量不能是零向量,所以 a ≠ 0 且 b ≠ 0。

(a + bi)(a - bi) = a² - i²×b² = a² + b²

    很明显a² + b² > 0,所以所有对应分量与它的共轭转置相乘的和一定大于0。然后证明第二个性质,证明方法类似。

Axa = λaxa

Axb = λbxb

    有两个不同方向的特征向量:xa、xb,对应的特征值分别为:λa、λb。要证明xa和xb垂直,就是说 xaxbT = 0。思路是一样的,先联系到一起。

xbTAxa = xbTλaxa

(Axb)T = xbTAT = xbTA = λbxbT

xbTAxa = λbxbTxa = λaxbTxa 

    由于 λ≠ λb,所以 xbTxa = 0。

    这两证明都是在A是实矩阵的情况下,如果A是复矩阵,那就不是 AT,而是 A*T了,这一点暂时先不证明,不过参考《特征向量》可以大概看出,A的转置就是变了个正负号。如果是复数,转置以后变号特征向量和没变一样,如果特征向量想变成共轭的那个,矩阵转置以后也得共轭才行。

    既然都到这一篇了,讲对称阵,肯定是说线性无关的,那这个对称阵就一定可以对角化(《矩阵的幂》):

A = S∧S-1

    而且已经证明了S中所有的基之间都是正交的,对于S中的某个基向量x:

Ax = λx

    通过 《正交基标准化》中介绍过的标准化的方法,两边的x都可以化为标准正交基,那么提出来的系数也相同,于是系数约掉了,也就是说特征矩阵中的正交基一定可以转化为标准正交基,那么S也就可以使用Q替代。虽说有些画蛇添足,但是不这么来一下总觉得差点啥,如果有问题依然是找我讨论下最好。严谨的证明方法,其实也是有的,只是涉及到了很多课里还没讲的概念,我在结尾列一下,有兴趣的自己查查就好了,不知道Gelbert后面会不会讲。

    由于S中的向量都可以化为标准正交基,S就可以是正交矩阵了,于是:

A = Q∧Q-1

    可逆矩阵转置的逆等于逆的转置:

(AA-1)T = (A-1)TAT = I   => (A-1)T = (AT)-1 

QT = Q-1 

A = Q∧Q-1 = Q∧QT

    对称矩阵等于其转置,分解以后也一样:

(Q∧QT)T = Q∧QT

    Gelberts说:对称矩阵一定能分解成A = Q∧QT这样的形式,即正交矩阵乘以对角矩阵乘以正交矩阵的转置,这在数学上称为谱定理,谱(spectrum)就是指矩阵的特征值集合。在力学上,这常称为主轴定理,他没事儿就讲物理。

    谱定理还可以用另一种形式表达:

8fe73a8226d48ad955b67d3f39eb0fa0.png

    《矩阵的幂》中有过相似的分解过程。其中的 λnqnqnT,可以与《正交》讲到的投影矩阵P = (aaT)/(aTa)对比一下。能发现只是由于a换成q后,qTq = 1就只剩下qqT了,这一组分解就变成每个特征值的投影的集合了。另外,还是qqT个单元阵,无论几次方都还是自己。总觉得好像在哪篇里提到过相关的内容,不过想不起来了。

    对称矩阵正负主元个数与正负特征值个数分别相等:惯性定律,就不证明了,又牵扯好多概念。Gelbert说可以应用于求特征值,比如移动7个单位,再看看有多少个正负主元什么的。

  对称矩阵还有一个很出名的子类,主元全是正数的,叫正定矩阵。既然主元都是正的,特征是肯定也都是正的,那么子行列式也都是正的,这三个条件等价,看上去这是后续课程的内容,我就不发散了。

    以下发散一下,前边说的不知道课上会不会讲的内容,就是列一些概念,大部分都是抄来的,最后一段干脆就是百度上贴过来的:

    谱定理提供了一个算子所作用的向量空间的标准分解,称为谱分解,特征值分解,或者特征分解。在代数上,主轴定理是完全平方公式的泛化。在线性代数和泛函分析中,它是谱定理的几何等价物。

  和牛顿第一定律同名的惯性定律,还有合同定理,细节不说了,估计是因为涉及二次型的原因,Gelbert并没有提到。包括 Hermitian 矩阵(共轭转置的对称),酉矩阵(酉矩阵U : UU* = I),至于正交变换算不算讲了有点闹不清楚,其实应该算是讲了。我相信这里很多内容他的教材里都有,只是课上没讲。

    酉空间(unitary linear space)是一种特殊的复线性空间。指以一类埃尔米特函数作内积的复线性空间。设V是复数域C上的线性空间,J是C的(共轭)自同构:(a+bi)J=a-bi。若在V上定义了一个关于J的埃尔米特函数,并且对任意α∈V,内积(α,α)≥0及(α,α)=0 当且仅当α=0,则称V为酉空间。n维酉空间U中总存在标准正交基。对U的任一线性变换σ,都存在它的共轭变换σ*。若以A,B分别表示σ与σ*关于给定基的矩阵,则A=G′-1B-′G′,这里G是关于给定基的格拉姆矩阵,B-′是B的转置共轭矩阵。对U的任一正规(埃尔米特)变换σ,都存在标准正交基,使σ关于此基的矩阵为对角形(实对角形)矩阵。


公众号:

837b37c2cd5ac19d31f46e7fffdc241e.png

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值