python一元线性回归的优点_Python数据分析之一元线性回归

问题

制作一元材积表,不懂林学的可能不知道,如图,也就是构造材积和胸径间的关系,这里采用了python的一元线性回归方法(本人用spss做了幂函数非线性回归,效果最好)。

Python方差分析导入库和数据

from sklearn import linear_model

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

df1 = pd.read_excel('C:/Users/Administrator/Desktop/一元材积表.xlsx')绘制散点图

X = np.array(df1[['胸径']])

Y = np.array(df1[['材积']])

plt.rc('font',family='STXihei',size=15)

plt.scatter(X,Y,60,color='blue',marker='o',linewidths=3,alpha=0.4)

plt.xlabel('胸径')

plt.ylabel('材积')

plt.title('一元材积表')

plt.show()

可以看出,用一元线性回归是不太理想的,不过为了给老师交作业,还是做一下好了。一元回归模型

clf = linear_model.LinearRegression()

clf.fit(X,Y)

print(clf.coef_,clf.intercept_)

print(clf.score(X,Y))

结果如图

结论

R2不高,模型并不太好。

作者:罗罗攀 Python爱好者社区专栏作者,请勿转载,谢谢。

简书主页:罗罗攀 - 简书

博客专栏:罗罗攀的博客

配套视频教程:Python3爬虫三大案例实战分享:猫眼电影、今日头条街拍美图、淘宝美食 Python3爬虫三大案例实战分享

公众号:Python爱好者社区(微信ID:python_shequ),关注,查看更多连载内容。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值