Image ATM (Automated Tagging Machine)
Image ATM is a one-click tool that automates the workflow of a typical image classification pipeline in an opinionated way, this includes:
Preprocessing and validating input images and labels
Starting/terminating cloud instance with GPU support
Training
Model evaluation
Image ATM is compatible with Python 3.6 and is distributed under the Apache 2.0 license.
Installation
There are two ways to install Image ATM:
Install Image ATM from PyPI (recommended):
pip install imageatm
Install Image ATM from the GitHub source:
git clone https://github.com/idealo/imageatm.git
cd imageatm
python setup.py install
Usage
Train with CLI
Run this in your terminal
imageatm pipeline config/config_file.yml
Train without CLI
Run the data preparation:
from imageatm.components import DataPrep
dp = DataPrep(
samples_file = 'sample_configfile.json',
image_dir = 'sample_dataset/',
job_dir='sample_jobdir/'
)
dp.run(resize=True)
Run the training:
from imageatm.components import Training
trainer = Training(image_dir=dp.image_dir, job_dir=dp.job_dir)
trainer.run()
Run the evaluation:
from imageatm.components import Evaluation
evaluator = Evaluation(image_dir=dp.image_dir, job_dir=dp.job_dir)
evaluator.run()
Test
Test execution is triggered by these commands:
pip install -e ".[tests, docs]"
pytest -vs --cov=imageatm --show-capture=no --disable-pytest-warnings tests/
Transfer learning
The following pretrained CNNs from Keras can be used for transfer learning in Image-ATM:
Xception
VGG16
VGG19
ResNet50, ResNet101, ResNet152
ResNet50V2, ResNet101V2, ResNet152V2
ResNeXt50, ResNeXt101
InceptionV3
InceptionResNetV2
MobileNet
MobileNetV2
DenseNet121, DenseNet169, DenseNet201
NASNetLarge, NASNetMobile
Training is split into two phases, at first only the last dense layer gets trained, and then all layers are trained.
For each phase the learning rate is reduced after a patience period if no improvement in validation accuracy has been observed. The patience period depends on the average number of samples per class (n_per_class):
if n_per_class < 200: patience = 5 epochs
if n_per_class >= 200 and < 500: patience = 4 epochs
if n_per_class >= 500: patience = 2 epochs
Training is stopped early after a patience period that is three times the learning rate patience to allow for two learning rate adjustments before stopping training.
Contribute
We welcome all kinds of contributions. See the Contribution guide for more details.
Bump version
To bump up the version, use
bumpversion {part} setup.py
Cite this work
Please cite Image ATM in your publications if this is useful for your research. Here is an example BibTeX entry:
@misc{idealods2019imageatm,
title={Image ATM},
author={Christopher Lennan and Malgorzata Adamczyk and Gunar Maiwald and Dat Tran},
year={2019},
howpublished={\url{https://github.com/idealo/imageatm}},
}
Maintainers
Christopher Lennan, github: clennan
Malgorzata Adamczyk, github: gosia-malgosia
Gunar Maiwald: github: gunarmaiwald
Dat Tran, github: datitran
Copyright
See LICENSE for details.
TO-DOs:
We are currently using Keras 2.2. The plan is to use tf.keras once TF 2.0 is out. Currently tf.keras is buggy, especially with model saving/loading (https://github.com/tensorflow/tensorflow/issues/22697)