如果有一个自然数a能被自然数b整除,则称a为b的倍数,b为a的约数,最大公约数指两个或多个整数共有约数中最大的一个;而最小公倍数是两个或多个整数公有的倍数中除0以外最小的那个公倍数。【视频教程推荐:C语言教程】
计算两个数的最大公约数
根据约数的定义可知,某个数的所有约数必不大于这个数本身,几个自然数的最大公约数必不大于其中任何一个数。要求任意两个正整数的最大公约数即求出一个不大于其中两者中的任何一个,但又能同时整除两个整数的最大自然数。
算法思路:按照从大(两个整数中较小的数)到小(到最小的整数1)的顺序求出第一个能同时整除两个整数的自然数,即为所求。
代码示例:
#include
int main()
{
int m, n, temp, i;
printf("请输入任意2个数:\n");
scanf("%d%d", &m, &n);
if(m
{ /*交换m和n的值*/
temp=m;
m=n;
n=temp;
}
for(i=n; i>0; i--) /*按照从大到小的顺序寻找满足条件的自然数*/
if(m%i==0 && n%i==0)
{/*输出满足条件的自然数并结束循环*/
printf("%d 和 %d 的最大公约数为: %d\n", m, n, i);
break;
}
return 0;
}
输出:
计算两个数的最小公倍数
思路:求任意两个正整数的最小公倍数,即求出一个最小的能同时被两整数整除的自然数。
代码示例:
#include
int main()
{
int m, n, temp, i;
printf("请输入任意2个数:\n");
scanf("%d%d", &m, &n);
if(m
{ /*交换m和n的值*/
temp=m;
m=n;
n=temp;
}
for(i=m; i>0; i++) /*从大数开始寻找满足条件的自然数*/
if(i%m==0 && i%n==0)
{/*输出满足条件的自然数并结束循环*/
printf("%d 和 %d 的最小公倍数为: %d\n", m, n, i);
break;
}
return 0;
}
输出:
最小公倍数也可以使用最大公约数来求,公式:
● 最小公倍数=两数的乘积/最大公约(因)数
以上就是本篇文章的全部内容,希望能对大家的学习有所帮助。更多精彩内容大家可以关注相关教程栏目!!!
相关学习推荐:C视频教程