python 4.5%2_程序运行慢?你怕是写的假 Python

Python程序运行太慢的一个可能的原因是没有尽可能的调用内置方法,下面通过5个例子来演示如何用内置方法提升PythGon程序的性能。1. 数组求平方和输入一个列表,要求计算出该列表中数字的的平方和。最终性能提升了1.4倍。首先创建一个长度为10000的列表。arr = list(range(10000))1.1 最常规的写法while循环遍历列表求平方和。平均运行时间2.97毫秒。def sum_sqr_0(arr):

res = 0

n = len(arr)

i = 0

while i 

res += arr[i] ** 2

i += 1

return res

%timeit sum_sqr_0(arr)

2.97 ms ± 36.4 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1.2 for range代替while循环

避免i += 1的变量类型检查带来的额外开销。平均运行时间2.9毫秒。def sum_sqr_1(arr):

res = 0

for i in range(len(arr)):

res += arr[i] ** 2

return res

%timeit sum_sqr_1(arr)

2.9 ms ± 137 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1.3for x in arr代替for range

避免arr[i]的变量类型检查带来的额外开销。平均运行时间2.59毫秒。def sum_sqr_2(arr):

res = 0

for x in arr:

res += x ** 2

return res

%timeit sum_sqr_2(arr)

2.59 ms ± 89 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1.4 sum函数套用map函数

平均运行时间2.36毫秒def sum_sqr_3(arr):

return sum(map(lambda x: x**2, arr))

%timeit sum_sqr_3(arr)

2.36 ms ± 15.1 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1.5 sum函数套用生成器表达式

生成器表达式如果作为某个函数的参数,则可以省略掉()。平均运行时间2.35毫秒。def sum_sqr_4(arr):

return sum(x ** 2 for x in arr)

%timeit sum_sqr_4(arr)

2.35 ms ± 107 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

1. 6 sum函数套用列表推导式

平均运行时间2.06毫秒。def sum_sqr_5(arr):

return sum([x ** 2 for x in arr])

%timeit sum_sqr_5(arr)

2.06 ms ± 27.2 µs per loop (mean ± std. dev. of 7 runs, 100 loops each)

2. 字符串拼接

输入一个列表,要求将列表中的字符串的前3个字符都拼接为一个字符串。最终性能提升了2.1倍。

首先创建一个列表,生成10000个随机长度和内容的字符串。from random import randint

def random_letter():

return chr(ord('a') + randint(0, 25))

def random_letters(n):

return "".join([random_letter() for _ in range(n)])

strings = [random_letters(randint(1, 10)) for _ in range(10000)]

2.1 最常规的写法

while循环遍历列表,对字符串进行拼接。平均运行时间1.86毫秒。def concat_strings_0(strings):

res = ""

n = len(strings)

i = 0

while i 

res += strings[i][:3]

i += 1

return res

%timeit concat_strings_0(strings)

1.86 ms ± 74.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

2.2for range代替while循环

避免i += 1的变量类型检查带来的额外开销。平均运行时间1.55毫秒。def concat_strings_1(strings):

res = ""

for i in range(len(strings)):

res += strings[i][:3]

return res

%timeit concat_strings_1(strings)

1.55 ms ± 32.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

2.3for x in strings代替for range

避免strings[i]的变量类型检查带来的额外开销。平均运行时间1.32毫秒。def concat_strings_2(strings):

res = ""

for x in strings:

res += x[:3]

return res

%timeit concat_strings_2(strings)

1.32 ms ± 19.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

2.4 .join方法套用生成器表达式

平均运行时间1.06毫秒。def concat_strings_3(strings):

return "".join(x[:3] for x in strings)

%timeit concat_strings_3(strings)

1.06 ms ± 15.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

2.5 .join方法套用列表解析式

平均运行时间0.85毫秒。def concat_strings_4(strings):

return "".join([x[:3] for x in strings])

%timeit concat_strings_4(strings)

858 µs ± 14.5 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

3. 筛选奇数

输入一个列表,要求筛选出该列表中的所有奇数。最终性能提升了3.6倍。

首先创建一个长度为10000的列表。arr = list(range(10000))

3.1 最常规的写法

创建一个空列表res,while循环遍历列表,将奇数append到res中。平均运行时间1.03毫秒。def filter_odd_0(arr):

res = []

i = 0

n = len(arr)

while i 

if arr[i] % 2:

res.append(arr[i])

i += 1

return res

%timeit filter_odd_0(arr)

1.03 ms ± 34.1 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

3.2for range代替while循环

避免i += 1的变量类型检查带来的额外开销。平均运行时间0.965毫秒。def filter_odd_1(arr):

res = []

for i in range(len(arr)):

if arr[i] % 2:

res.append(arr[i])

i += 1

return res

%timeit filter_odd_1(arr)

965 µs ± 4.02 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

3.3for x in arr代替for range

避免arr[i]的变量类型检查带来的额外开销。平均运行时间0.430毫秒。def filter_odd_2(arr):

res = []

for x in arr:

if x % 2:

res.append(x)

return res

%timeit filter_odd_2(arr)

430 µs ± 9.25 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

3.4 list套用filter函数

平均运行时间0.763毫秒。注意filter函数很慢,在Python 3.6里非常鸡肋。def filter_odd_3(arr):

return list(filter(lambda x: x % 2, arr))

%timeit filter_odd_3(arr)

763 µs ± 15.9 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

3.5 list套用生成器表达式

平均运行时间0.398毫秒。def filter_odd_4(arr):

return list((x for x in arr if x % 2))

%timeit filter_odd_4(arr)

398 µs ± 16.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

3.6 带条件的列表推导式

平均运行时间0.290毫秒。def filter_odd_5(arr):

return [x for x in arr if x % 2]

%timeit filter_odd_5(arr)

290 µs ± 5.54 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

4. 两个数组相加

输入两个长度相同的列表,要求计算出两个列表对应位置的数字之和,返回一个与输入长度相同的列表。最终性能提升了2.7倍。

首先生成两个长度为10000的列表。arr1 = list(range(10000))

arr2 = list(range(10000))

4.1 最常规的写法

创建一个空列表res,while循环遍历列表,将两个列表对应的元素之和append到res中。平均运行时间1.23毫秒。def arr_sum_0(arr1, arr2):

i = 0

n = len(arr1)

res = []

while i 

res.append(arr1[i] + arr2[i])

i += 1

return res

%timeit arr_sum_0(arr1, arr2)

1.23 ms ± 3.77 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

4.2for range代替while循环

避免i += 1的变量类型检查带来的额外开销。平均运行时间0.997毫秒。def arr_sum_1(arr1, arr2):

res = []

for i in range(len(arr1)):

res.append(arr1[i] + arr2[i])

return res

%timeit arr_sum_1(arr1, arr2)

997 µs ± 7.42 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

4.3for i, x in enumerate代替for range

部分避免arr[i]的变量类型检查带来的额外开销。平均运行时间0.799毫秒。def arr_sum_2(arr1, arr2):

res = arr1.copy()

for i, x in enumerate(arr2):

res[i] += x

return res

%timeit arr_sum_2(arr1, arr2)

799 µs ± 16.7 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

4.4for x, y in zip代替for range

避免arr[i]的变量类型检查带来的额外开销。平均运行时间0.769毫秒。def arr_sum_3(arr1, arr2):

res = []

for x, y in zip(arr1, arr2):

res.append(x + y)

return res

%timeit arr_sum_3(arr1, arr2)

769 µs ± 12.2 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

4.5 列表推导式套用zip

平均运行时间0.462毫秒。def arr_sum_4(arr1, arr2):

return [x + y for x, y in zip(arr1, arr2)]

%timeit arr_sum_4(arr1, arr2)

462 µs ± 3.43 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

5. 两个列表相同元素的数量

输入两个列表,要求统计两个列表相同元素的数量。其中每个列表内的元素都是不重复的。最终性能提升了5000倍。

首先创建两个列表,并将元素的顺序打乱。from random import shuffle

arr1 = list(range(2000))

shuffle(arr1)

arr2 = list(range(1000, 3000))

shuffle(arr2)

5.1 最常规的写法

while循环嵌套,判断元素arr1[i]是否等于arr2[j],平均运行时间338毫秒。def n_common_0(arr1, arr2):

res = 0

i = 0

m = len(arr1)

n = len(arr2)

while i 

j = 0

while j 

if arr1[i] == arr2[j]:

res += 1

j += 1

i += 1

return res

%timeit n_common_0(arr1, arr2)

338 ms ± 7.81 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

5.2for range代替while循环

避免i += 1的变量类型检查带来的额外开销。平均运行时间233毫秒。def n_common_1(arr1, arr2):

res = 0

for i in range(len(arr1)):

for j in range(len(arr2)):

if arr1[i] == arr2[j]:

res += 1

return res

%timeit n_common_1(arr1, arr2)

233 ms ± 10.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each)

5.3for x in arr代替for range

避免arr[i]的变量类型检查带来的额外开销。平均运行时间84.8毫秒。def n_common_2(arr1, arr2):

res = 0

for x in arr1:

for y in arr2:

if x == y:

res += 1

return res

%timeit n_common_2(arr1, arr2)

84.8 ms ± 1.38 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

5.4 使用if x in arr2代替内层循环

平均运行时间24.9毫秒。def n_common_3(arr1, arr2):

res = 0

for x in arr1:

if x in arr2:

res += 1

return res

%timeit n_common_3(arr1, arr2)

24.9 ms ± 1.39 ms per loop (mean ± std. dev. of 7 runs, 10 loops each)

5.4 使用更快的算法

将数组用.sort方法排序,再进行单层循环遍历。把时间复杂度从O(n2)降低到O(nlogn),平均运行时间0.239毫秒。def n_common_4(arr1, arr2):

arr1.sort()

arr2.sort()

res = i = j = 0

m, n = len(arr1), len(arr2)

while i 

if arr1[i] == arr2[j]:

res += 1

i += 1

j += 1

elif arr1[i] > arr2[j]:

j += 1

else:

i += 1

return res

%timeit n_common_4(arr1, arr2)

329 µs ± 12.3 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

5.5 使用更好的数据结构

将数组转为集合,求交集的长度。平均运行时间0.067毫秒。def n_common_5(arr1, arr2):

return len(set(arr1) & set(arr2))

%timeit n_common_5(arr1, arr2)

67.2 µs ± 755 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值