点击“蓝字”,关注我们
各位“指尖物流信息”的粉丝好!数据已经成为继土地、资本、劳动力、技术之后的一个新型生产要素,如何挖掘数据价值,辅助企业决策是个热点话题。SPSS工具,是经典的统计分析工具,从本期将继续在“指尖物流信息”公众号大数据栏目的“SPSS统计分析”系列推出SPSS统计分析工具的使用,欢迎关注。
No.1 |实训目标
在实际问题中,影响因变量的因素往往有多个,本次我们将学习如何利用SPSS学习如何使用多元线性回归分析问题。
No.2 |数据介绍
下表为不同餐饮店的日均营业额、周边居民人数、用餐平均支出、周边居民月平均收入、周边餐馆数和距市中心距离(只显示部分数据),要求利用多元线性回归分析研究日均营业额与周边居民人数、用餐平均支出、周边居民月平均收入、周边餐馆数和距市中心距离之间的关系。
No.3 |实验步骤
点击【分析】,选择【回归】下的【线性】
第二步:
将“日均营业额”选入【因变量】,将其余变量选入【自变量】,在【方法】下选择【向后】
第三步:
在【步进方法标准】下选择【使用F的概率】,在【进入】下输入“0.05”,在【删除】下输入“0.051”
第四步:
点击【继续】返回,点击【确定】,出现结果
调整R方值为0.800,说明用餐平均支出和周边居民人数对日均营业额的解释程度为80%。
F值=48.900,对应的sig值小于0.05,拒绝原始假设,说明回归方程总体是显著的。
其他因素不变的情况下,日均营业额的回归系数是0.196,t值=3.826,对应的sig值=0.001小于0.05,说明回归系数是显著的,周边居民人数每增加1万人,日均营业额期望增加0.196万元;用餐平均支出的回归系数是0.175,t值=3.328,对应的sig值=0.003小于0.05,说明回归系数是显著的,日均营业额每增加1元/人,日均营业额期望增加0.175万元。
回归方程为:销售价格=-10.776+0.196*日均营业额+0.175*日均营业额+误差
编辑:小连
欢迎关注有内涵的“指尖物流信息”平台
联系邮箱:281254701@qq.com