多元线性回归matlab代码_20.多元线性回归分析

点击“蓝字”,关注我们

    各位“指尖物流信息”的粉丝好!数据已经成为继土地、资本、劳动力、技术之后的一个新型生产要素,如何挖掘数据价值,辅助企业决策是个热点话题。SPSS工具,是经典的统计分析工具,从本期将继续在“指尖物流信息”公众号大数据栏目的“SPSS统计分析”系列推出SPSS统计分析工具的使用,欢迎关注。

 No.1 |实训目标 

    在实际问题中,影响因变量的因素往往有多个,本次我们将学习如何利用SPSS学习如何使用多元线性回归分析问题。

 No.2 |数据介绍 

    下表为不同餐饮店的日均营业额、周边居民人数、用餐平均支出、周边居民月平均收入、周边餐馆数和距市中心距离(只显示部分数据),要求利用多元线性回归分析研究日均营业额与周边居民人数、用餐平均支出、周边居民月平均收入、周边餐馆数和距市中心距离之间的关系。

1628e1eaff619f3d495882c1b59e5f38.png

 No.3 |实验步骤 

点击【分析】,选择【回归】下的【线性】

af28c1b65e299da8e62a0eb1e3ee6c72.png

第二步:

将“日均营业额”选入【因变量】,将其余变量选入【自变量】,在【方法】下选择【向后】

e23ce28317864d230ca7baef9b0e4fa2.png

第三步:

在【步进方法标准】下选择【使用F的概率】,在【进入】下输入“0.05”,在【删除】下输入“0.051”

3c0699685d195f05c74b95662ea3e08c.png

第四步:

点击【继续】返回,点击【确定】,出现结果

8bf6ce13b628fb3e864e8ab967c4b149.png

调整R方值为0.800,说明用餐平均支出和周边居民人数对日均营业额的解释程度为80%。

7bfdb487319309a070ffb7498b319d52.png

F值=48.900,对应的sig值小于0.05,拒绝原始假设,说明回归方程总体是显著的。

17db6d8b2ecb2703b8b81086438c1ce6.png

其他因素不变的情况下,日均营业额的回归系数是0.196,t值=3.826,对应的sig值=0.001小于0.05,说明回归系数是显著的,周边居民人数每增加1万人,日均营业额期望增加0.196万元;用餐平均支出的回归系数是0.175,t值=3.328,对应的sig值=0.003小于0.05,说明回归系数是显著的,日均营业额每增加1元/人,日均营业额期望增加0.175万元。

回归方程为:销售价格=-10.776+0.196*日均营业额+0.175*日均营业额+误差

编辑:小连

f4026a93127992893e099966b3a7c511.png 15d3474cba3ec2143dd9684492ebbf64.png 94949a628e4ce5d192997392d4d6f2df.png

欢迎关注有内涵的“指尖物流信息”平台

联系邮箱:281254701@qq.com

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值