书店里的书会按照一定的类目进行分类,摆放在不同的书架上,便于人们更快地找到自己要购买的书籍。

分类
自然数,按照不同的性质也可以进行分类。比如说,按照奇、偶性,可以将自然数分为奇数和偶数。也就是平常大家所说的单数和双数。
能被2整除的自然数,都叫偶数。不能被2整除的自然数叫奇数。
如果有人问你,12÷4=?大家会毫不犹豫说12÷4=3。
我们会说12是4的倍数,反过来说4是12的因数。
当然12不止4这一个因数,12有多少个因数?我们按照有序枚举的方法列出来,有1,2, 3,4 ,6,12,总共有6个,大家有没发现因数个数还是成对出现的?(完全平方数的因数个数是奇数个,以后我们会写一篇关于完全平方数的文章)

但是有些自然数它的因数个数是比较少,比如说3,只有1和3两个因数,2也只有1和2两个因数。
如果一个自然数除了1和它自己本身之外,没有其他因数,我们称这个数为质数,以前部分书籍上写的是素数,其实是一个意思。
如果一个自然数除了1和它本身之外,还有其他因数,这样的数称为合数。
有两个自然数是比较特殊的。0和1既不属于质数,也不属于合数。
也就是说大于等于2的自然数才分质数与合数。
质数中有几个数非常特殊。比如说2,它是唯一的偶数质数。因为任何大于2的偶数必定是2的倍数,它肯定就是合数。
除了2以外,所有的质数都是奇数。
如果两个质数的和等于19,求这两个质数的差?
这道题看似条件不足,但细心的朋友,利用奇偶性就可以很快把这题做出来。两个质数的和是个奇数,因此它必定是由一个奇数和一个偶数相加。而质数中的偶数只有一个2,所以另外一个质数就是:19-2=17,它们的差:17-2=15。
我们知道判断一个自然数能否被3整除,只要将各个数位上的和加起来,如果是3的倍数,那么这个数就是3的倍数,这个数也就是合数了。比如30, 十位是3,个位是0,3+0=3 ,是3的倍数,所以30能被3整除,它是个合数。
但是3是唯一的一个数字和为3的倍数,且不是合数的自然数。
5也是一个比较特殊的数。除了5本身以外,任何一个末位是5的自然数都是合数,因为它们一定是5的倍数。

2和3是12的因数,也是质数,我们称2和3是12的质因数。当然在写分解质因数的时候,注意要写成标准形式。
质数不像合数那样能大卸八块,也正是由于这个特性,因此质数广泛的应用于网络安全加密。
把两个大质数相乘,积很容易算出来,但是根据乘积来找质数就不是那么容易了。如果是多个大质数,即使是用超级计算机来找出这些质数也要费大量的时间。这样也就起到了加密的效果了。
100以内的常见质数有25个,大家自己可以去列举出来,最好是能够背诵。以后在分解质因数的过程中,会有很大的帮助。

大家也可以记下以下几个质数,101, 103, 107 ,109。 最大的三位数质数是997,最小的四位数质数是1009,最大的四位质数是9973。
关于质数的一些性质就简单介绍到这。有喜欢的朋友欢迎关注、点赞、收藏、转发。