python怎么下一行_Python中实现“一行拆多行“和“多行并一行“,你会吗?

这篇博客介绍了如何使用Python的Pandas库处理数据,包括将一行数据拆分为多行和将多行数据合并为一行。方法一使用了`melt()`和`split()`函数,而方法二利用了`explode()`函数。同时,还展示了如何通过`groupby()`和自定义函数实现多行合并。这两个方法提供了灵活的数据操作选项。

5c63c853b0164be5cce9fd2d1cbec578.jpg-wh_651x-s_2037709241.jpg

粉丝提问

今天粉丝提了下面这样一个问题,其中一个是"一行拆多行",另外一个是"多行并一行",貌似群友用power query已经解决了。但是基于Python怎么做呢?接着往下看。

1f11611c2b7ca0896664f1fbf99dd388.jpg-wh_600x-s_2607069226.jpg

一行拆多行

上面这个问题我会提供两个思路,供大家选择,当然肯定是越简单得越好。每种方法中都有一些好用的技巧,希望大家能够好好学习。

1)方法一

下方代码中有很多重要的知识点,需要我们下去好好学习一下,我只提供解题思路,关于每个知识点怎么用,希望大家下去自行研究学习。

Pandas.melt()函数的用法;

Series.str.split("/",expand=True)中,expand=True参数的用法;

Series.sort_values()对文本进行排序;

Python中enumerate()函数的用法;

import pandasaspd

# 读取数据

df = pd.read_excel("test1.xlsx",sheet_name="Sheet1")

# 将一列炸裂成多列

df[["类型1","类型2","类型3"]] = df["电影类型"].str.split("/",expand=True)

# 选取想要的列

df_final = df[["电影名","类型1","类型2","类型3"]]

# 将行转列

df_final = df_final.melt(id_vars=["电影名"],value_name="类型")

# 对“电影名”字段进行排序

df_final = df_final[["电影名","类型"]]

df_final.sort_values(by="电影名",inplace=True)

# 删除“类型==None”的行

forindex,valueinenumerate(df_final["类型"]):

if value == None:

df_final.drop(df_final.index[index],inplace=True)

df_final

结果如下:

821529afb75596b8142906dbe683dd83.jpg

2)方法二

上述方法确实复杂,由于我的Pandas版本是0.23.4,因此无法使用explode()方法,进行炸裂操作。在pandas0.25版本的时候,DataFrame中才新增了一个explode()方法,专门用来将一行变多行。

Pandas.explode()函数的用法;

import pandasaspd

# 读取数据

df = pd.read_excel("test1.xlsx",sheet_name="Sheet1")

# 将一行拆分成列表形式,注意:这里不需要使用expand=True参数

df["type"] = df["电影类型"].str.split("/")

# 直接炸裂指定列

df.explode("type")

结果如下:

3da98eb07847ec3bb38a17bfdf538f81.jpg-wh_600x-s_3787964627.jpg

多行并一行这里没有使用什么特别的知识,好好的理解Pandas中分组聚合应用某个函数,即可轻松解决这个问题。

import pandasaspd

# 读取数据

df = pd.read_excel("test1.xlsx",sheet_name="Sheet2")

# 分组聚合,应用某个函数

def func(df):

return','.join(df.values)

df = df.groupby(by='电影名').agg(func).reset_index()

df

结果如下:

b2affa4a87bc39aed9919573d9c25c0d.jpg

【编辑推荐】

【责任编辑:华轩 TEL:(010)68476606】

点赞 0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值