下载地址:九上期中复习专题一:平行四边形与特殊平行四边形
九上复习专题一:平行四边形与特殊平行四边形(一)
【知识点1】
一般平行四边形与特殊平行四边形的关系(请在括号内填写相关的判定条件)
几种平行四边形的性质比较(矩形、菱形、正方形只需填写不同于平行四边形的性质即可)
图形 | 边 | 角 | 对角线 | 对称性 | 对称中心/对称轴 |
【知识训练1】
1.四边形ABCD中,∠A=50°,欲使四边形为平行四边形,则∠B=____ _,∠C=__ __,∠D=__ __.
2.如图,在平行四边形ABCD中,已知对角线AC和BD相交于点O,
△ABO的周长为17,AB=6,那么对角线AC+BD= .
3.在矩形ABCD中,AC、BD相交于点O,∠AOB= 60°,AB=6,则AC=_______ 第2题图
4.已知矩形的周长是24,相邻两边之比是1:2,那么这个矩形的面积是__________
5.矩形的两条对角线所形成的的锐角为60°,一条对角线与短边的和为15,则短边长为_________
6.在菱形ABCD中,对角巷相交于点O, OA=8,OB=6,则菱形的周长是_________,面积是___________
7.菱形的一个内角为120°,较短的对角线长为10,那么菱形的周长是_____________
8.菱形的对角线长为10和24,则周长为_________。
9.正方形ABCD中,E为BC上一点,且EF⊥BD于F, 那么 △EFB是___________三角形。
10.如图,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,
在对角线AC上有一点P,使PD+PE最小,则这个最小值为 ( )
A. B.
C.
D.
第10题图
【知识点2】三角形中位线定理.直角三角形相关定理
1. 三角形的中位线定理:三角形的中位线平行于__________________,并且等于____________________。
2.直角三角形斜边上的中线等于________ ____,直角三角形中30o角所对的直角边等于斜边的_ ___.
【知识训练2】
11.直角三角形两条直角边的长分别为12和5,则斜边上的中线长为( )
A.26 B.13 C.8.5 D.6.5
12.如图,在四边形ABCD中,AD平行于BC,AD=6cm,BD=9cm,AB=CD=8cm,E.F.G.H分别是AD 、BD、BC、AC的中点,那么四边形EFGH的周长是( )
A.14cm B.15cm C.16cm D.17cm
13.如图,在矩形ABCD中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )
A.线段EF的长逐渐增长 B.线段EF的长逐渐减小
C.线段EF的长始终不变 D.线段EF的长与点P的位置有关
14.如图,四边形ABCD中,∠A=90°,AB=,AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为( )
A.3 B.4 C.4.5 D.5
第12题图 第13题图 第14题图 第15题图
15.如图,DE是△ABC的中位线,F是DE的中点,CF的延长线交AB于点G,若△CEF的面积为12cm2,则S△DGF的值为( )
A.4cm2 B.6cm2 C.8cm2 D.9cm2
16.如图,在△ABC中,D是BC上一点,AB=AD,E、F分别是AC、BD的中点,EF=2,则AC的长是( )
A.3 B.4 C.5 D.6
17.如图,在平面直角坐标系中,点O为坐标原点,△ABC是边长为16 的等边三角形,点A、B分别在x轴的正半轴、y轴的正半轴上滑动,点C在第一象限,连接OC,则线段OC的长的最大值是 .
18.如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是 .
19.如图,△ABC中,CF⊥AB于F,BE⊥AC于E,M为BC的中点,若∠A=50°,则∠FME的度数 .
第 16题图 第17题图 第18题图 第19题图
【典型例题】
20.如图,已知四边形ABCD为平行四边形,AE⊥BD于E,CF⊥BD于F.
(1)求证:BE=DF;
(2)若 M.N分别为边AD.BC上的点,且DM=BN,试判断四边形MENF的形状.
21.如图,点O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,连接OE.求证:OE=BC.
22.在△ABC中,BE、CF分别为边AC、AB上的高,M为BC的中点,MN⊥EF于点N.求证:FN=EN.
23.如图,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.求证AE=EF.
九上复习专题一:平行四边形与特殊平行四边形(二)
【例题剖析】
例1.下列命题中,真命题是( )
A.有两边相等的平行四边形是菱形 B.有一个角是直角的四边形是矩形
C.四个角相等的菱形是正方形 D.两条对角线互相垂直且相等的四边形是正方形
例2.如图1,ABCD的周长为16cm,AC、BD相交于点O,OE⊥AC交AD于E,则△DCE的周长( )
A.4 cm B.6cm C.8cm D.10cm
例3.如图2,已知正方形ABCD的边长为1,连结AC、BD,CE平分∠ACD交BD于点E,则DE= 。
图1 图2 图3 图4
例4.如图3,正方形的边长为1,以对角线AC为边作第二个正方形,再以对角线AE为边作第三个正方形AEGH,如此下去,第n个正方形的边长为 .
例5.如图4,过矩形对角线AC的中点O作EF
AC分别交AB,DC于E、F,点G为AE的中点,若∠AOG=30°,AB=6,则
.
例6.如图,△ABC中,AB=8,AC=6,AD、AE分别是其角平分线和中线,过点C作CG⊥AD于F,交AB于G,连接EF,求线段EF的长.
【基础练习】
1.在四边形ABCD中,O是对角线的交点,能判定这个四边形是正方形的条件是( )
A.AB=BC=CD=DA B.AC⊥BD,AC=BD
C.AO=BO=CO=DO,AC⊥BD D.∠A=∠B=∠C=∠D
2.在ABCD中,∠A:∠B:∠C:∠D的值可以是( )
A.1:2:3:4 B.1:2:2:1 C.2:2:1:1 D.2:1:2:1
3.用两块完全相同的直角三角形拼下列图形:①平行四边形 ②矩形 ③菱形 ④正方形 ⑤等腰三角形 ⑥等边三角形,一定能拼成的图形是( )
A.①④⑤ B.②⑤⑥ C.①②③ D.①②⑤
4.如图,在ABCD中,已知AD=8cm,AB=6cm,DE平分∠ADC交BC边于点E,则BE等于( )
A.2cm B.4cm C.6cm D.8cm
第4题图 第5题图 第6题图 第7题图
5.如图,在四边形ABCD中,E是BC边的中点,连结DE并延长,交AB的延长线于F点,.添加一个条件,使四边形ABCD是平行四边形.你认为下面四个条件中可选择的是( )
A. B.
C.
D.
6.如图,在菱形ABCD中,∠BAD=80°,AB的垂直平分线交对角线AC于点F,E为垂足,连接DF.
则∠CDF等于( ) A.80° B.70° C.65° D.60°
7.如图,点M是ABCD的边AD上任意一点,则
S,则
( )
A. 8cm2 B. 10cm2 C. 12cm2 D. 16cm2
8.如图,AD是△ABC的角平分线,DE,DF分别是△ABD和△ACD的高,得到下面四个结论:
①OA=OD;②AD⊥EF;③当∠A=90°时,四边形AEDF是正方形;④.
其中正确的是( )
A.②③ B. ②④ C.①③④ D.②③④
第8题图 第9题图 第10题图
9.如图,直线l过正方形ABCD的顶点B,点A、C到直线l的距离分别是1和2,则正方形的边长是 .
10.如图,在矩形ABCD中,点E、F分别在AB、DC上,BF∥DE,若AD=12cm,AB=7cm,
且AE:EB=5:2,则阴影部分的面积为_______cm
11.已知菱形的两条对角线的长分别是6和8,那么它的边长是__ _____.
12.正方形的对角线的长与它的边长的比 .
13.如图,CD与BE互相垂直平分,AD⊥DB,∠BDE=700,则∠CAD= 0.
第13题图
14.如图,在平行四边形ABCD中,E,F分别是AC,CA延长线上的点,且CE=AF,则BF与DE具有怎么样的关系?试说明理由
15.如图,点M,N分别在平行四边形ABCD的边BC,AD上,且BM=DN,
,
,垂足分别为E,F,求证:MN与EF互相平分
16.如图,已知点E,F分别是ABCD的边BC,AD上的中点,且∠BAC=90°.
(1)求证:四边形AECF是菱形;
(2)若∠B=30°,BC=10,求菱形AECF面积.
17.阅读材料并解答问题
如图①,以Rt△ABC的直角边AB、AC为边分别向外作正方形ABDE和正方形ACFG,连接EG,可以得出结论△ABC的面积与△AEG的面积相等.
(1)在图①中的△ABC的直角边AB上任取一点H,连接CH,以BH、HC为边分别向外作正方形HBDE和正方形HCFG,连接EG,得到图②,则△HBC的面积与△HEG的面积的大小关系为 .
(2)如图③,若图形总面积是,其中五个正方形的面积和是
,则图中阴影部分的面积是 .
(3)如图④,点A、B、C、D、E都在同一直线上,四边形X、Y、Z都是正方形,若图形总面积是,正方形Y的面积是
,则图中阴影部分的面积是 .
18.如图,已知在△ABC中,AC=6,BC=8,AB=10,点P是AB上 (不与A、B重合),过P作PE⊥AC,PF⊥BC,垂足分别是E、F,连结EF,M为EF的中点.
(1)请判断四边形PECF的形状,并说明理由;
(2)随着P点在边AB上位置的改变,CM的长度是否也会改变?若不变,请你求CM的长度;若有变化,请你求CM的变化范围.