玩转数学
冰雹猜想
IPS数学名师空间站开发的“玩转数学”内容持续推送中,孩子们动脑,动口,动手,真正成为学习的主人。今天,我们一起来研究“冰雹猜想”吧!
小朋友们,你们听说过“冰雹猜想”吗?我们一起来尝试一下吧。
20世纪60年代,日本数学家角谷静夫发现了一个非常有趣的现象:对于任何一个正整数,如果是奇数,则下一步乘3再加1;如果是偶数,则下一步变成这个数的一半。
反复按照上述规则计算,像这样经过有限次的运算,最后得到的结果必然是1。
小试牛刀
小艾老师
我们可以用这样的思维导图来表示冰雹猜想的过程呢。
皮皮
那我用6来试一试吧。
思思
那我用9来试一试吧。
皮皮
思思,虽然我们两人1人选的是偶数,1人选的是奇数,但最后都变成了1。
是的呀,那是不是因为我们选的数不够大呢?
思思
皮皮
小朋友,你也挑选一个数试一试吧。
为什么算到“1”就不再往下计算了呢?因为“1”是奇数,应该乘3再加1,得“4”,“4”是偶数,除以2得到“2”,“2”再除以2又得到了“1”。也就是说,如果继续计算,我们就一直在“4→2→1”这个怪圈里循环了。
进阶挑战
小艾老师
你知道角谷的这个猜想为什么叫“冰雹猜想”吗?
这是因为,人们发现,运算过程中的数字起伏变化忽大忽小,就像积雨云中的小雨点,会被猛烈上升的气流带上零度以下的高空,凝固成小冰珠,最终变成大冰雹从天而降,砸到地面上。因此人们形象地把这个数学游戏称为“冰雹猜想”。
小艾老师
以正整数7为例,将每次的计算结果绘制成折线统计图:
在这个计算过程中,得数是奇数就乘3再加1,则数会变大,是偶数就除以2,则数变小。得数会随着奇数、偶数的不同也忽大忽小,但是,最终会变为“1”。
皮皮
所有的数都是这样变化的吗?
不一定哦,例如2的n次方数。
小艾老师
例如正整数64,这个数是由6个2相乘得到的,按照“冰雹猜想”的规则将每次所得的数绘制成折线统计图:
由于这些数的因数中只含有2,所以它们会一直缩小直到变为“1”,整条折线都呈下降趋势,始终没有上升的变化情况。
皮皮
小朋友,你还能说出哪些数也是这样的变化情况吗?
事实上,冰雹猜想如果是从2n出发(n是正整数),不论n如何庞大,都会像瀑布一样迅速坠落,而其他的数字即使不是如此,但在经过若干次的变换之后,最终也必然会落入纯偶数“16→8→4→2→1”的循环中。
思思
对比一下刚才我们几次试算的结果,你发现了吗?
脑洞大开
在冰雹猜想中,我们将每个数的变化过程称为“雹程”,像正整数“6”的雹程有8步,“9”的雹程有19步,“7”的雹程有16步,而“64”的雹程则仅仅只有6步,看来雹程步数的多少和这个正整数的大小没有绝对的关系。
皮皮
数一数,刚才你试算的那个正整数的雹程是( )步。
目前,英国剑桥大学教授John Conway找到了一个最强悍的数字——“27”,这个貌不惊人的数字如果按照这样的规则计算,则它的上浮下沉异常剧烈:首先,“27”要经过77步骤的变换到达顶峰值9232,然后又经过34步骤到达谷底值1,雹程足足有111步之多。
在1到100的范围内,像27这样的剧烈波动是没有的(当然,像54这样通过规则计算能得到“27”的数除外)。
知识链接
世界各国研究“冰雹猜想”的人很多,并给它起了许多名字,如西拉古斯猜想、考拉兹猜想、角谷猜想、哈塞猜想、奇偶归一猜想、3x+1问题……一般都和研究与传播它的数学家或者地点有关,可以说这是一个命名最多的数学猜想。
冰雹猜想最为神奇之处在于,无论刚开始存在多么大的误差,最后都会自行修复。据说计算机编程已经可以尝试验证冰雹猜想了哦,所以小朋友,希望未来你也能用科技的方法加入数学研究的“大军”哦。
配套练习
滑动查看更多图片
往期回顾
玩转数学(126)--对对碰
玩转数学(125)--正方形黑洞
玩转数学(124)--探密数阵
玩转数学(123)--猴子选大王
玩转数学(122)--海空大战
玩转数学(121)--北斗定位棋
玩转数学(120)--迷幻八卦阵
玩转数学(119)--“纸洞大开”
图文:德清县乾元镇中心小学
沈梦璐
编辑:沈梦璐
审核:陈红霞 陈宏娅