python绘制国内生产总值散点图_Pandas/Pyplot中的散点图:如何按类别绘制

本文介绍了如何使用Matplotlib库中的scatter函数创建分组散点图,展示了如何结合pandas DataFrame和groupby操作,以及如何设置图例和采用pandas样式的颜色。通过实例演示了如何为不同类别标记数据点并调整图例位置。
摘要由CSDN通过智能技术生成

小编典典

你可以使用scatter它,但是这需要为你提供数值key1,并且你不会注意到图例。

最好只plot对像这样的离散类别使用。例如:

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

np.random.seed(1974)

# Generate Data

num = 20

x, y = np.random.random((2, num))

labels = np.random.choice(['a', 'b', 'c'], num)

df = pd.DataFrame(dict(x=x, y=y, label=labels))

groups = df.groupby('label')

# Plot

fig, ax = plt.subplots()

ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling

for name, group in groups:

ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)

ax.legend()

plt.show()

如果你希望外观看起来像默认pandas样式,则只需rcParams使用pandas样式表进行更新,并使用其颜色生成器即可。(我也略微调整了图例):

import matplotlib.pyplot as plt

import numpy as np

import pandas as pd

np.random.seed(1974)

# Generate Data

num = 20

x, y = np.random.random((2, num))

labels = np.random.choice(['a', 'b', 'c'], num)

df = pd.DataFrame(dict(x=x, y=y, label=labels))

groups = df.groupby('label')

# Plot

plt.rcParams.update(pd.tools.plotting.mpl_stylesheet)

colors = pd.tools.plotting._get_standard_colors(len(groups), color_type='random')

fig, ax = plt.subplots()

ax.set_color_cycle(colors)

ax.margins(0.05)

for name, group in groups:

ax.plot(group.x, group.y, marker='o', linestyle='', ms=12, label=name)

ax.legend(numpoints=1, loc='upper left')

plt.show()

2020-02-17

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值