图像锐化算法(Image sharpening):拉普拉斯增强和Unsharp Masking(附代码)
(y(m,n)=x(m,n)+lambda*z(m,n))
其中(x(m,n))是处理前图片,(y(m,n))是锐化后,(z(m,n))代表增强图像的边缘和细节(高频部分),(lambda)是增强因子,如下图所示:
1.laplacian 增强
def laplacianSharpen(im, alpha):
k = np.array([[0, 0, 0, ], [0, 1, 0], [0, 0, 0]])+alpha * np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])
# k = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])
dst = cv2.filter2D(im, -1, k)
return dst
注:当然(lambda)也可以不固定为1,原图像加上(lambda)乘拉普拉斯锐化的结果,(lambda)控制增强效果,如果觉得过于锐利,可以调小一点。
2.usm和改进usm
usm(unsharp ma