matlab 拉普拉斯 锐化,图像锐化算法(Image sharpening):拉普拉斯增强和Unsharp Masking(附代码)(示例代码)...

本文介绍了图像锐化技术,包括拉普拉斯增强和Unsharp Masking(USM)算法,并提供了MATLAB代码示例。拉普拉斯锐化通过滤波增强图像边缘和细节,USM则是通过对比原图和模糊图得到高频成分。文中还讨论了改进的USM方法,如减少黑点和过度锐化问题,并提到了相关论文中的优化策略。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像锐化算法(Image sharpening):拉普拉斯增强和Unsharp Masking(附代码)

(y(m,n)=x(m,n)+lambda*z(m,n))

其中(x(m,n))是处理前图片,(y(m,n))是锐化后,(z(m,n))代表增强图像的边缘和细节(高频部分),(lambda)是增强因子,如下图所示:

20200528132734541944.png

1.laplacian 增强

20200528132734699176.png

def laplacianSharpen(im, alpha):

k = np.array([[0, 0, 0, ], [0, 1, 0], [0, 0, 0]])+alpha * np.array([[0, -1, 0], [-1, 4, -1], [0, -1, 0]])

# k = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]])

dst = cv2.filter2D(im, -1, k)

return dst

注:当然(lambda)也可以不固定为1,原图像加上(lambda)乘拉普拉斯锐化的结果,(lambda)控制增强效果,如果觉得过于锐利,可以调小一点。

2.usm和改进usm

usm(unsharp ma

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值