题目描述
给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。
说明:你不能倾斜容器,且 n 的值至少为 2。
图中垂直线代表输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
示例
输入: [1,8,6,2,5,4,8,3,7]
输出:49
题目要求
int maxArea(int* height, intheightSize){
}
题解
1 int max(int a,intb){2 return a>b?a:b;3 }4 int min(int a,intb){5 return a
8 int maxArea(int* height, intheightSize){9 int i=0,j=heightSize-1,count=0;10 while(iheight[j]){12 count=max(count,(j-i)*height[j]);13 j--;14 }else{15 count=max(count,(j-i)*height[i]);16 i++;17 }18 }19 returncount;20 }
暴力解法可以通过但是耗时O(n^2),此算法仅耗时O(n),值得学习参考。
初始状态是两个指针位于首尾,此时容器的底最大。接下来执行的操作是i++或者j--,无论选择哪个,容器底都会减小,而容器的高度取决于短边,因此为了获取最大的容积,需要放弃短边,也就是说,短边的指针需要往内移动,保留了长边以获得更高边的机会可能。
内容来源于网络如有侵权请私信删除