安装cuda 非root_非root用户在服务器上安装CUDA10.1和cudnn到指定目录

本文档详细介绍了非root用户如何在服务器上安装CUDA 10.1和cudnn到指定个人目录,包括下载、创建自定义目录、配置安装选项以及更新环境变量等步骤,确保在没有管理员权限的情况下也能顺利完成安装并测试验证。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

非root用户在服务器上安装CUDA和cudnn到指定目录

(适用于服务器上管理员已安装好显卡驱动或已安装的CUDA版本无法满足自己要求)

准备工作

首先下载CUDA10.1 (无需登录,一定要下update2,其他版本无法自定义目录)

https://developer.nvidia.com/cuda-10.1-download-archive-update2

打开网页后选择对应自己服务器的处理器和系统版本,格式选runfile(local),这里以Ubuntu 16.04为例

wget http://developer.download.nvidia.com/compute/cuda/10.1/Prod/local_installers/cuda_10.1.243_418.87.00_linux.run

然后下载cudnn,选择CUDA10.1对应的版本 (需登录nvidia账号,无法用wget,我只能采取本地下载上传到服务器)

https://developer.nvidia.com/rdp/cudnn-download

选择 “cuDNN Library for Linux”,下载下来是一个tgz的压缩包。

最后,提前建好cuda的自定义目录,我这里以当前用户名的home目录为例,安装cuda-10.1:

cd ~

mkdir cuda-10.1

mkdir cuda-10.1/mylib

安装CUDA:

sh cuda_10.1.243_418.87.00_linux.run

选择accept 后,更改安装选项('X' 代表选中,这里我只安装CUDA Toolkit,一般不搞CUDA编程单跑深度学习就够了):

┌──────────────────────────────────────────────────────────────────────────────┐

| CUDA Installer │

│ - [ ] Driver │

│ [ ] 418.87.00 │

│ + [X] CUDA Toolkit 10.1 │

│ [ ] CUDA Samples 10.1 │

│ [ ] CUDA Demo Suite 10.1 │

│ [ ] CUDA Documentation 10.1 │

│ Options │

│ Install │

选中Options:

┌──────────────────────────────────────────────────────────────────────────────┐

│ Options │

│ Driver Options │

│ Toolkit Options │

│ Samples Options │

│ Library install path (Blank for system default) │

│ Done │

│ │

先更改Toolkit Options (/usr这种非用户目录的都要去掉,我这里全去掉了,另外进入 Change Toolkit Install Path设置cuda安装到自己具有写入权限的路径(提前建好),我这里是“/home/liminghao/cuda-10.1/”):

┌──────────────────────────────────────────────────────────────────────────────┐

│ CUDA Toolkit │

│ Change Toolkit Install Path │

│ [ ] Create symbolic link from /usr/local/cuda │

│ - [ ] Create desktop menu shortcuts │

│ [ ] Yes │

│ [ ] No │

│ [ ] Install manpage documents to /usr/share/man │

│ Done │

│ │

┌──────────────────────────────────────────────────────────────────────────────┐

│ Change Toolkit Install Path │

│ /home/liminghao/cuda-10.1/ │

│ │

做完Done,回到Options菜单, 更改Library install path (不改不行,它会偷偷写入/var/lib)

┌──────────────────────────────────────────────────────────────────────────────┐

│ Library install path (Blank for system default) │

│ /home/liminghao/cuda-10.1/mylib/ │

上述两个自定义的目录最好提前自己手动建好。安装成功后,会出个summary。

更改环境变量:

vim ~/.profile

在尾部添加(经评论指正,将cuda的各种库目录添加到环境变量):

# CUDA

export PATH="/home/liminghao/cuda-10.1/bin:$PATH"

export LD_LIBRARY_PATH="/home/liminghao/cuda-10.1/lib64:/home/liminghao/cuda-10.1/mylib/lib64:$LD_LIBRARY_PATH"

刷新环境变量:

source ~/.profile

测试CUDA:

nvcc -V

nvcc: NVIDIA (R) Cuda compiler driver

Copyright (c) 2005-2019 NVIDIA Corporation

Built on Sun_Jul_28_19:07:16_PDT_2019

Cuda compilation tools, release 10.1, V10.1.243

安装cudnn

具体目录需要根据情况修改,我这里CUDA安装到了 ~/cuda-10.1 内

tar -zxvf cudnn.tgz

cd cuda # 此处进入cudnn解压的目录

cp ./include/cudnn.h ~/cuda-10.1/include

cp ./lib64/libcudnn* ~/cuda-10.1/lib64

chmod a+r ~/cuda-10.1/include/cudnn.h ~/cuda-10.1/lib64/libcudnn*

查看cudnn版本:

cat ~/cuda-10.1/include/cudnn.h | grep CUDNN_MAJOR -A 2

结果:

#define CUDNN_MAJOR 7

#define CUDNN_MINOR 6

#define CUDNN_PATCHLEVEL 5

--

#define CUDNN_VERSION (CUDNN_MAJOR * 1000 + CUDNN_MINOR * 100 + CUDNN_PATCHLEVEL)

### Root用户环境下安装配置CUDNN 对于希望在root用户环境中安装并配置CUDACuDNN的情况,可以遵循特定的方法来实现这一目标。由于缺乏管理员权限,一些常规的安装路径不可用,因此需要采取替代方案。 #### 准备工作 为了准备安装环境,在不具备root权限的情况下,应当创建一个个人目录用于存储所有的库文件其他资源。这可以通过简单的命令完成: ```bash mkdir ~/cuda-installation cd ~/cuda-installation ``` #### 下载CuDNN 下载适用于所使用的CUDA版本对应的CuDNN包至关重要。访问NVIDIA官方网站获取适合于已安装CUDA版本的CuDNN tarball文件[^1]。确保选择与现有CUDA工具链兼容的版本常重要。 假设已经选择了正确的tarball文件,使用`wget`或其他方式将其下载到之前建立的本地目录中: ```bash wget http://developer.download.nvidia.com/compute/redist/cudnn/v7.6.5/cudnn-10.1-linux-x64-v7.6.5.32.tgz ``` 请注意上述链接仅为示例;实际操作时应替换为官方提供的最新稳定版链接。 #### 解压并设置环境变量 解压缩下载好的tarball并将其中的内容复制到自定义的目标位置。这里假定该位置位于用户的家目录下: ```bash tar -xzvf cudnn-*.tgz --directory=~/cuda-installation/ export LD_LIBRARY_PATH=$HOME/cuda-installation/lib64:$LD_LIBRARY_PATH export CPATH=$HOME/cuda-installation/include:$CPATH ``` 通过这种方式修改后的环境变量仅影响当前shell会话。如果想要永久生效,则需编辑`.bashrc`或相应的shell初始化脚本以包含这些导出语句[^2]。 #### 测试安装 最后一步是对新安装CuDNN进行验证测试。可以从GitHub等平台找到专门为此设计的小型程序来进行这项工作。运行此类程序可以帮助确认一切正常运作。 ```python import tensorflow as tf print(tf.reduce_sum(tf.random.normal([1000, 1000]))) ``` 这段Python代码片段利用TensorFlow框架执行了一个矩阵运算,并打印结果。如果有GPU可用并且正确设置了CuDNN,那么这个计算应该能够顺利地转移到GPU上执行[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值