专题一 规律探索猜想类
规律探索与猜想是中考中常见题型之一,它主要用于考查学生观察、分析、归纳、猜想等方面的能力,既可以命基础题,也可命中高档题,题型不限,方法灵活,主要有数式规律、图形规律、坐标规律等,解这类问题要善于发现其过程中的特点,抓住其周期是解决此类问题的关键.
纵观遵义近五年中考,每年都会涉及一道规律探索问题,一般难度不大,预计2018年遵义中考也有可能命一道中基础(选择或填空)规律探索题.
,中考重难点突破)
数字规律
【例1】(临夏中考)古希腊数学家把数1,3,6,10,15,21,…叫做三角形数,它有一定的规律性,若把第一个三角形数记为x 1,第二个三角形数记为x 2,…第n 个三角形数记为x n ,则x n +x n +1=________.
【解析】根据三角形数得到x 1=1,x 2=3=1+2,x 3=6=1+2+3,x 4=10=1+2+3+4,x 5=15=1+2+3+4+5,即三角形数为从1到它的顺号数之间所有整数的和,即x n =1+2+3+…+n =n (n +1)
2
,x n +1=(n +1)(n +2)
2
,然后计算x n +x n +1可得.
【答案】(n +1)2
◆模拟题区
1.(2017遵义二中二模)计算下列各式的值:92
+19;992
+199;9992
+1 999;9 9992
+19 999.观察所得结果,总结存在的规律,应用得到的规律可得
99 (9)
22 015个9+199…9,2 015个9))=__10
2__015
__.
2.(2017遵义六中三模)将自然数按以下规律排列: 第一列 第二列 第三列 第一行 1 4 5 … 第二行 2 3 6 … 第三行 9 8 7 … ……
表中数2在第二行第一列,与有序数对(2,1)对应;数5与(1,3)对应;数14与(3,4)对应;根据这一规律,数2 014对应的有序数对为__(45,12)__.
3.(2017遵义十一中三模)
已知:2-122-12=13;4-3+2-142-32+22-12=1
5;
计算:6-5+4-3+2-162-52+42-32+22-12=__1
7__;
猜想:
[(2n +2)-(2n +1)]+…+(6-5)+(4-3)+(2-1)
[(2n +2)2-(2n +1)2]+…+(62-52)+(42-32)+(22-12
)