RTCGAToolbox同样也是用于获取和处理TCGA数据的一个R包。很多癌症研究所都开发了自己的TCGA探索工具,比如Broad Institute开发了FireBrowse,而RTCGAToolbox就是用于获取和处理FireBrowse的R包。
这种R包的使用主流程一般为:下载数据 - 处理数据 - 可视化。下面依次来看本包在这三方面的安排:
下载数据
在下载数据之前,先安装RTCGAToolbox包,并载入所需工具包:
#安装RTCGAToolbox包
if(!require("RTCGAToolbox")){
BiocManager::install("RTCGAToolbox")
}
library("RTCGAToolbox")
#载入数据处理工具包
library("tidyverse")
RTCGAToolbox包中的getFirehoseData函数用于从Firehose下载TCGA数据。
函数的具体参数如下:
getFirehoseData(dataset, runDate = "20160128", gistic2Date = "20160128",
RNASeqGene = FALSE, clinical = TRUE,miRNASeqGene = FALSE,
RNASeq2GeneNorm = FALSE, CNASNP = FALSE,CNVSNP = FALSE,
CNASeq = FALSE, CNACGH = FALSE, Methylation = FALSE,
Mutation = FALSE, mRNAArray = FALSE,miRNAArray = FALSE,
RPPAArray = FALSE, GISTIC = FALSE,
RNAseqNorm = "raw_counts", RNAseq2Norm = "normalized_count",
forceDownload = FALSE, destdir = ".", fileSizeLimit = 500,
getUUIDs = FALSE, ...)
关键的参数为癌症类型dataset
,时间runDate
,GISTIC数据分析时间gistic2Data
,以及要获取的数据类型(默认下载clinical数据):RNAseq、clinical、miRNA、CNA、mutation
等等,比如需要下载RNAseq数据,那么设置参数RNASeqGene =TRUE,需要CNA数据,那么设置参数CNASeq = TRUE。
dataset
:癌症类型列表,使用函数getFirehoseDatasets获取;
runDate
:数据分析时间,使用函数getFirehoseRunningDates获取,选最新就行;
gistic2Data
:Gistic数据分析时间,使用函数getFirehoseAnalyzeDates获取,选最新就行;
其他可以下载的数据类型的含义为:
比如需要获取癌症ACC(Acute Myeloid Leukemia)在Firehose数据库中最新的数据,数据类别包含RNAseq、clinical、GISTIC以及mutation,如下:
FirehoseData 1],
runDate=getFirehoseRunningDates()[1], gistic2Date=getFirehoseAnalyzeDates()[1],
RNASeqGene=TRUE,clinical=TRUE,GISTIC=TRUE,Mutation=TRUE)
FirehoseData
#ACC FirehoseData objectStandard run date: 20160128
#Analysis running date: 20160128
#Available data types:
# clinical: A data frame of phenotype data, dim: 92 x 18
# GISTIC: A FirehoseGISTIC for copy number data
# Mutation: A data.frame, dim: 20166 x 52
#To export data, use the 'getData' function.
可以发现下载的数据只有clinical、GISTIC和Mutation,没有RNAseq。单独下载RNAseq数据,发现没有可用的数据类型,应该是ACC没有RNAseq数据。
getFirehoseData(dataset='ACC',runDate=getFirehoseRunningDates()[1], RNASeqGene=T,clinical=F)
#ACC FirehoseData objectStandard run date: 20160128
#Analysis running date: NA
#Available data types:
#To export data, use the 'getData' function.
数据处理
提取数据
RTCGAToolbox里面有一个示例数据包RTCGASample,比较小,但是又包含了足够的数据:包括RNAseq、clinical、GISTIC以及Mutaion,以下就以它为例进行分析。
下载之后的TCGA数据是FirehoseData对象,可以使用三个函数(基本上是等价的)完成相应的数据提取:biocExtract、getData、selectType。
比如从示例数据RTCGASample中提取临床数据:
biocExtract(RTCGASample,type="clinical")%>%head
getData(RTCGASample,type= "clinical")%>%head
selectType(RTCGASample,"clinical")%>%head
结果输出是完全一样的。
type参数可用的选择有:"clinical", "RNASeqGene", "miRNASeqGene", "RNASeq2GeneNorm", "CNASNP", "CNVSNP", "CNASeq", "CNACGH", "Methylation", "Mutation", "mRNAArray", "miRNAArray", "RPPAArray", "GISTIC", "GISTICA", "GISTICT", "GISTICP"
。
数据处理
此外RTCGAToolbox还可以完成一些数据处理的工作:差异表达基因分析:getDiffExpressedGenes
,基因表达和拷贝数变异的相关系数:getCNGECorrelation
,突变率:getMutationRate
。
差异表达基因分析如下:
t1 0.5) #绘图有热图等
#logFC默认值是2,筛选出来的基因太少,只有4个,此处为了叙述方便,改为0.5
同时会绘制热图:
t1的内容是一个S4类对象,可以使用@提取相关内容,比如t1[[1]]@Toptable
就是常见的差异表达分析表(如下图),也可以使用函数showResults来提取数据:
拷贝数和基因表达的关系
getCNGECorrelation函数可以获得拷贝数变化和基因表达的相关关系:
corRes = getCNGECorrelation(RTCGASample,adj.pval = 1,raw.pval = 1)
corRes[[1]]@Correlations%>%head
#showResults(corRes[[1]])的输出结果是一样的,如下:
> corRes[[1]]@Correlations%>%head
GeneSymbol Cor adj.p.value p.value
1 LYZL1 -0.14654634 0.9317555 0.36687874
2 SEPHS1 -0.37693816 0.6287624 0.01650501
3 FLJ45983 0.14150035 0.9428853 0.38378545
4 TUBAL3 -0.06913254 0.9712442 0.67165645
5 PRKCQ -0.18959020 0.8688328 0.24131149
6 WDR37 -0.20867359 0.8688328 0.19628861
getMutationRate函数的道理是一样的,不过多叙述了。
可视化
本软件有两个主要的可视化函数getReport和getSurvival。
getReport
按照预计,getReport可以直接绘制一个Circle图,包含差异基因的logFC变化、拷贝数变化及突变,然而实际上这个函数已经无法使用了。
原本的操作为:
require("RCircos")
require("Homo.sapiens")
# 基因坐标
Homo.sapiens %>%genes(columns="SYMBOL")%>% as.data.frame() %>%
mutate(SYMBOL_1=as.character(SYMBOL))%>% dplyr::select(7,1,5,2,3) %>%
distinct(SYMBOL_1,.keep_all = T)%>% drop_na() %>%
dplyr::rename(SYMBOL=SYMBOL_1)-> locations
rownames(locations) 1]
# 差异基因分析
t1 1)
getReport(dataObject=RTCGASample,DGEResult1=t1[[1]],geneLocations=locations)
然后就会在工作目录下创建一个pdf文件,里面就是一个绘制好的Circle图。然而现在直接运行的话会报错:
Please use RCircos.Set.Core.Components() instead.
就是说getReport引用的RCircle包的一个函数修改了,但是getReport并没有更新。详情可以见https://www.jianshu.com/p/9b1559c3a5a7,里面叙述的很清楚。
那么是不是按照这篇文章修改一下getReport函数就可以了呢?好像由于RCircos又有更新,虽然这一次可以创建一个PDF文件,但是这个PDF文件无法打开,所以暂时还是放弃这个函数吧。
getSurvival
绘制KM生存曲线:
data(RTCGASample)
RTCGASample %>% getData("clinical") %>% select(3:5) %>% rownames_to_column()%>%
mutate(Time=ifelse(is.na(daystolastfollowup),daystodeath,daystolastfollowup))%>%
rename(Samples=rowname,Cencor=vitalstatus) %>%select(Samples,Time,Cencor) -> survDatagetSurvival(dataObject=RTCGASample,geneSymbols=c("TAP2"),sampleTimeCensor=survData)
#TAP2基因是差异表达基因里面最显著且变化最大的基因。
结果如下,生存率和TAP2看着还有有关系的,分的很开。绘图比较原始,随便看看就行。
参考资料
TCGA的28篇教程- 使用R语言的RTCGAToolbox包获取TCGA数据
RTCGAToolbox参考手册:http://www.bioconductor.org/packages/release/bioc/manuals/RTCGAToolbox/man/RTCGAToolbox.pdf

写在最后

1
生信六周年全国巡讲
南宁、南京、福州

2
广州·数据挖掘课
2天带你玩转GEO

3
生信入门课全国巡讲
11月-福州、上海

生信入门课大纲 | |
1 | 生信R语言入门 |
2 | GEO数据挖掘 |
3 | 生信linux入门 |
4 | 转录组课题设计与数据分析 |