mysql 分布式唯一id_分布式唯一id

本文分析了在分布式系统中生成全局唯一ID的需求,包括全局唯一、趋势递增和非连续性。对比了几种常见方案:UUID因其长度过长而不适合;雪花算法基于时间戳、工作ID和序列号生成,性能高但依赖时钟;MySQL的自增ID简单但存在单点故障;美团的Leaf服务结合了MySQL和雪花算法的优点,但仍有数据库依赖。每种方案都有其优缺点,需根据实际需求选择。
摘要由CSDN通过智能技术生成

1 背景

目前的系统中,有很多业务需要对数据进行唯一标识(订单号、用户券码、事件id等),系统对id号往往有以下几点要求:

全局唯一。不能出现重复的id号,这是基本的要求

趋势递增。为了保证mysql聚集索引性能,尽量保证有序性

非连续。数据不能是连续的,例如券的id是连续的,有可能被恶意请求领券;并且可以让外界知道一天的数据量

2 方案

2.1 uuid

uuid是大部分人第一个接触的唯一id生成方式。共包含32个16进制数字,以连字号分为五段,形式为8-4-4-4-12的36个字符

优点:

性能高,本地直接生成,没有网络消耗

缺点:

uuid过长,作为主键性能太差

生成为字符串,很多场景需要使用long类型

2.2 雪花算法

4042e5888f28

image.png

1bit,不用,因为二进制中最高位是符号位,1表示负数,0表示正数。生成的id一般都是用整数,所以最高位固定为0。

41bit-时间戳,用来记录时间戳,毫秒级。

10bit-工作机器id,用来记录工作机器id。

12bit-序列号,序列号,用来记录同毫秒内产生的不同id。

由于在Java中64bit的整数是long类型,所以在Java中SnowFlake算法生成的id就是long来存储的。

public class IdWorker{

//下面两个每个5位,加起来就是10位的工作机器id

private long workerId; //工作id

private long datacenterId; //数据id

//12位的序列号

private long sequence;

public IdWorker(long workerId, long datacenterId, long sequence){

// sanity check for workerId

if (workerId > maxWorkerId || workerId < 0) {

throw new IllegalArgumentException(String.format("worker Id can't be greater than %d or less than 0",maxWorkerId));

}

if (datacenterId > maxDatacenterId || datacenterId < 0) {

throw new IllegalArgumentException(String.format("datacenter Id can't be greater than %d or less than 0",maxDatacenterId));

}

System.out.printf("worker starting. timestamp left shift %d, datacenter id bits %d, worker id bits %d, sequence bits %d, workerid %d",

timestampLeftShift, datacenterIdBits, workerIdBits, sequenceBits, workerId);

this.workerId = workerId;

this.datacenterId = datacenterId;

this.sequence = sequence;

}

//初始时间戳

private long twepoch = 1288834974657L;

//长度为5位

private long workerIdBits = 5L;

private long datacenterIdBits = 5L;

//最大值

private long maxWorkerId = -1L ^ (-1L << workerIdBits);

private long maxDatacenterId = -1L ^ (-1L << datacenterIdBits);

//序列号id长度

private long sequenceBits = 12L;

//序列号最大值

private long sequenceMask = -1L ^ (-1L << sequenceBits);

//工作id需要左移的位数,12位

private long workerIdShift = sequenceBits;

//数据id需要左移位数 12+5=17位

private long datacenterIdShift = sequenceBits + workerIdBits;

//时间戳需要左移位数 12+5+5=22位

private long timestampLeftShift = sequenceBits + workerIdBits + datacenterIdBits;

//上次时间戳,初始值为负数

private long lastTimestamp = -1L;

public long getWorkerId(){

return workerId;

}

public long getDatacenterId(){

return datacenterId;

}

public long getTimestamp(){

return System.currentTimeMillis();

}

//下一个ID生成算法

public synchronized long nextId() {

long timestamp = timeGen();

//获取当前时间戳如果小于上次时间戳,则表示时间戳获取出现异常

if (timestamp < lastTimestamp) {

System.err.printf("clock is moving backwards. Rejecting requests until %d.", lastTimestamp);

throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds",

lastTimestamp - timestamp));

}

//获取当前时间戳如果等于上次时间戳(同一毫秒内),则在序列号加一;否则序列号赋值为0,从0开始。

if (lastTimestamp == timestamp) {

sequence = (sequence + 1) & sequenceMask;

if (sequence == 0) {

timestamp = tilNextMillis(lastTimestamp);

}

} else {

sequence = 0;

}

//将上次时间戳值刷新

lastTimestamp = timestamp;

/**

* 返回结果:

* (timestamp - twepoch) << timestampLeftShift) 表示将时间戳减去初始时间戳,再左移相应位数

* (datacenterId << datacenterIdShift) 表示将数据id左移相应位数

* (workerId << workerIdShift) 表示将工作id左移相应位数

* | 是按位或运算符,例如:x | y,只有当x,y都为0的时候结果才为0,其它情况结果都为1。

* 因为个部分只有相应位上的值有意义,其它位上都是0,所以将各部分的值进行 | 运算就能得到最终拼接好的id

*/

return ((timestamp - twepoch) << timestampLeftShift) |

(datacenterId << datacenterIdShift) |

(workerId << workerIdShift) |

sequence;

}

//获取时间戳,并与上次时间戳比较

private long tilNextMillis(long lastTimestamp) {

long timestamp = timeGen();

while (timestamp <= lastTimestamp) {

timestamp = timeGen();

}

return timestamp;

}

//获取系统时间戳

private long timeGen(){

return System.currentTimeMillis();

}

//---------------测试---------------

public static void main(String[] args) {

IdWorker worker = new IdWorker(1,1,1);

for (int i = 0; i < 30; i++) {

System.out.println(worker.nextId());

}

}

}

优点:

毫秒数在高位,保证了递增趋势

不依赖第三方,性能很高

缺点:

强依赖于时钟,如果时钟回拨会造成重复

2.3 MySQL

给数据库主键设置 auto_increment_increment保证自增,每次需要获取唯一id时访问数据库即可

优点:

简单,不需要引入额外的技术

缺点:

数据库有单点故障,数据库宕机导致获取分布式id的服务不可用

每次获取都需要访问数据库,容易产生性能瓶颈

2.4 leaf

leaf是美团自研的分布式id服务,有Leaf-segment和Leaf-snowflake两种类型。分别弥补了MySQL和snowflake各自的缺点

2.4.1 Leaf-segment

Leaf-segment在mysql的基础上,解决了每次获取都需要访问mysql的弊端。改为每次获取一段数据,大大减少了访问数据库的频率。

4042e5888f28

image.png

同时,为了解决leaf服务同时访问数据库而造成的数据库压力过大,对 Leaf-segment做了些优化,采用双buffer的方式,Leaf服务内部有两个号段缓存区segment。当前号段已下发10%时,如果下一个号段未更新,则另启一个更新线程去更新下一个号段。当前号段全部下发完后,如果下个号段准备好了则切换到下个号段为当前segment接着下发,循环往复。

除此之外,Leaf-segment采用了类似于拥塞控制的思路,根据服务获取段的时间差,来控制步长。时间差短,步长增加;时间差长,减少步长。但是增大或减少都不会超过设定的阈值。

优点:

leaf服务有一段缓存,即使数据库不可用,在一段时间内也可以提供服务

缺点:

DB宕机会造成整个系统不可用。

id不够随机

2.4.1 Leaf-snowflake

Leaf-snowflake是在snowflake的基础上进行了改进,避免的时间回拨造成的id重复。为了方便管理和配置,使用zk管理和分配workId,同时服务启动后将workId进行本地缓存,从而保证弱依赖zk。

启动Leaf-snowflake服务,连接Zookeeper,在leaf_forever父节点下检查自己是否已经注册过(是否有该顺序子节点)。

如果有注册过直接取回自己的workerID(zk顺序节点生成的int类型ID号),启动服务。

如果没有注册过,就在该父节点下面创建一个持久顺序节点,创建成功后取回顺序号当做自己的workerID号,启动服务。

解决时钟问题:

4042e5888f28

image.png

思路是保证zk上保存的时间是相对准确的,和zk上的时间进行对比,如果超过阈值就失败并报警。保证了时间回拨不会造成影响

如果节点是新的,则和其他节点的平均时间进行对比,如果超过阈值则失败

如果节点是旧的,则和该节点上次的时间进行比较,如果小于了上次的时间,则说明发生了时间回拨,失败并报警。

每隔3秒上传自己的时间到zk

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值