python 变量聚类 proc varclus_SAS(变量)聚类输出结果详细说明

SAS

软件——

VARCLUS

过程变量聚类

如果没有为

VARCLUS

过程提供初始分类情况,

VARCLUS

过程开始把所有变量看成一个类,然后它重复以下步骤:

(

1

)

首先挑选一个将被分裂的类。

通常这个被选中的类的类分量所解释的方差百分比最小

(选项

PRECENT=

)

或者同第二

主成分有关的特征值为最大(选项

MAXETGH=

)。

(

2

)

把选中的类分裂成两个类。首先计算前两个主成分,

再进行斜交旋转,并把每个变量分配到旋转分量对应的类里,分

配的原则是使变量与这个主成分的相关系数为最大。

(

3

)

变量重新归类。通过多次反复重复,变量被重新分配到这些类里,使得由这些类分量所解释的方差为最大。

当每一类满足用户规定的准则时,

VARCLUS

过程停止。

所谓准则,或是每个类分量所解释的方差的百分比,或是每一类的第二

特征值达到预设定的标准为止

如果没有准则,则当每个类只有一个特征值大于

1

时,

VARCLUS

过程停止

SAS

程序

输入如下程序:

OPTION PS=800;

/*

要求输出的结果中每页包括

800

行内容,可避免不必要的

SAS

标题反复出现。

*/

PROC VARCLUS DATA=WORK.XLSSAS;

VAR X1-X12;

RUN;

说明:过程语句中没有任何选择项,默认的聚类方法为主成分聚类法。过程步最终会聚成多少类,将由默认的临界值来决定,

即当每个类只有一个特征值大于

1

时,

VARCLUS

过程停止。

结果分析:

The SAS System

10:04 Wednesday, November 24, 2010

17

Oblique Principal Component Cluster Analysis

Observations

1018

PROPORTION

0

Variables

12

MAXEIGEN

1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值