正弦定理和余弦定理_数学一轮复习24,正弦定理和余弦定理

【考试要求】

掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.

【知识梳理】

1.正、余弦定理

在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则

f7bc0c998e96724aedb366fc9e8b31ec.png
7598c2d2fab8693c2199d8ba20b228c5.png
aa4f0966268cdb89d0a18c741419d165.png
86e315eb5e58937d4bddb7b0d6eb76ff.png
a52310e98f143d44a33b6ed73b7e1d32.png

【考点聚焦】

考点一 利用正、余弦定理解三角形

b5c2f9109b0510195859500ee7a19646.png
61cd9b606d4da5f2fda58e1bf5e8b6f6.png

【规律方法】 1.三角形解的个数的判断:已知两角和一边,该三角形是确定的,其解是唯一的;已知两边和一边的对角,该三角形具有不唯一性,通常根据三角函数值的有界性和大边对大角定理进行判断.

2.已知三角形的两边和其中一边的对角解三角形.可用正弦定理,也可用余弦定理.用正弦定理时,需判断其解的个数,用余弦定理时,可根据一元二次方程根的情况判断解的个数.

06069b3d2926c20d692276525022ef3a.png
33b0048e12a40819c0c746137b316f71.png

考点二 判断三角形的形状

248800b8f5f4fa6921f45c3dadaf7423.png

【规律方法】 1.判定三角形形状的途径:(1)化边为角,通过三角变换找出角之间的关系;(2)化角为边,通过代数变形找出边之间的关系,正(余)弦定理是转化的桥梁.

2.无论使用哪种方法,都不要随意约掉公因式,要移项提取公因式,否则会有漏掉一种形状的可能.注意挖掘隐含条件,重视角的范围对三角函数值的限制.

b9508b4487e7a722e486edbd7079951f.png

考点三 和三角形面积、周长有关的问题 多维探究

角度1 与三角形面积有关的问题

df846fce66d31239d432e15699b570c9.png

角度2 与三角形周长有关的问题

33fa8df250d300c2088a67c96753200c.png
57373aea5cb531d8a86b3174e122ddb9.png
33fc580a9cb669f71a5cd278fb359377.png

【反思与感悟】

1.正弦定理和余弦定理其主要作用是将已知条件中的边、角关系转化为角的关系或边的关系.

2.在已知关系式中,既含有边又含有角,通常的解题思路是:先将角都化成边或边都化成角,再结合正弦定理、余弦定理即可求解.

3.在△ABC中,若a2+b2

【易错防范】

1.在利用正弦定理解有关已知三角形的两边和其中一边的对角解三角形时,有时出现一解、两解,所以要进行分类讨论.

另外三角形内角和定理起着重要作用,在解题中要注意根据这个定理确定角的范围,确定三角函数值的符号,防止出现增解等扩大范围的现象.

2.在判断三角形的形状时,等式两边一般不要约去公因式,应移项提取公因式,以免漏解.

48c50020112c2598420510420f8a8ee4.png
407495f5b8056571a2d6f47d0bebfbba.png
23d52c1179509dd77fddab95747791a5.png
3e3b9fd06a48d23caa26012bc6e6102e.png
0b058c55ee9f9aa203490871883277f4.png
2b28e4fde0d13918b0a555f60c16f255.png
10439471633d58636262898873568f84.png
4247e0ca674a79fc903eb05717761693.png
08e87ad138fc48aba9b020f260340b50.png
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值