MATLAB算法实战应用案例精讲-【智能优化算法】 正弦余弦算法(SCA)(附MATLAB和Python代码实现)

本文详细介绍了正弦余弦算法(SCA)的基本原理和改进形式——COLSCA,包括混沌与对立学习机制的融入。通过运用COLSCA解决Kapur熵多阈值图像分割问题,并展示了在齿轮设计、调频参数估计等工程问题中的应用。同时,提供了MATLAB和Python的代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

前言

 算法原理

数学模型

算法思想

算法步骤 

融入 混 沌 与 对 立 学 习 机 制 的 改 进 正 弦 余 弦 算 法 COLSCA

振幅转换因子非线性调整

 混沌搜索机制

对立学习机制

算法拓展

利用改进正弦余弦算法 COLSCA 求解 Kapur熵 多阈值图像分割

Kapur熵最大化的多阈值图像分割模型

图像分割算法设计

实验分析

图像分割的评估指标

​编辑 实验结果分析

改进正余弦优化算法

改进的正余弦优化算法(ISCA)

正余弦优化算法(ISCA)框架

实验环境及参数设置

经典函数测试与数据分析

数值实验结果分析

收敛性分析

CPU 执行时间比较结果

测试结果统计分析

改进的正余弦算法在工程测试问题中的应用 

齿轮设计问题

调频参数估计问题

悬臂梁设计问题

减速器设计问题

压力管道设计问题

改进的正余弦算法在多级阈值分割中的应用

能量曲线

最大类间方差法(OTSU)

改进的正余弦算法在多级阈值分割中的应用

基准图像与评价指标

实验结果与分析

分割结果讨论

代码实现

MATLAB

Python


前言

正余弦算法(SCA)由澳大利亚的Mirjalili于2016年提出的一种基于种群的新型随机优化算法,SCA创建多个初始随机候选解,然后利用基于正弦和余弦函数的数学模型,使得这些解朝最优解方向或反向波动。

正弦余弦算法 SCA 是一种新型群智能优化算法 , 利 用正弦余弦函数的振荡波动进行全局寻优。 因其 参 数 少 、 结构简单且易于实现的优点, 寻优性能优于遗传算法
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值