归并排序比较次数_快速排序到底有多快?

7e949e87860f47b0123938936def0d96.png

上期为大家介绍了快速排序(Quicksort),有很多同学会问:快排是不是比之前几种排序都要快?它到底有多快?,那就让我们一起来做个小实验测试一下吧!

a8fa5324b9667aa2a990b1a29fb4cef0.png

一、实验设计

目前给大家介绍过了6种排序:冒泡排序、选择排序、 插入排序、希尔排序、归并排序、快速排序,并且在上期讲快速排续时给出了快排的优化方案:对于大数据集排序先使用快排,当分区达到一定小的时候使用插入排序,有同学就有疑惑:为什么当分区达到一定小时要用插入排序,这样真的会变快吗?

1.实验排序算法

冒泡排序、选择排序、插入排序、希尔排序、归并排序、快速排序

2.数据集规模

随机生成一个数据集,数据个数从10,100,1000依次递增到10万个

3.比较方法

比较每个排序算法所用时长,多次测试,减少误差

4.数据特征

首先对随机数进行排序,看看哪个排序方法较快;然后再对“基本有序”的数据集排序,再比较这几种排序方法用时。

二、实验代码

使用randint随机生成整数

1.随机数排序

if __name__ == '__main__':
    # 生成n个0-10万的随机整型数据
    n = 100000  #n in [10, 100, 1000, 10000, 100000]
    arr = [randint(0, 100000) for i in range(n)]

    start1 = time.time()
    # 使用deepcopy是为了排除电脑或程序自动优化或使用缓存等因素
    bubble_sort(deepcopy(arr))
    print("冒泡排序耗时:" + str(time.time() - start1))

    start2 = time.time()
    selection_sort(deepcopy(arr))
    print("选择排序耗时:" + str(time.time() - start2))

    start3 = time.time()
    insertion_sort(deepcopy(arr))
    print("插入排序耗时:" + str(time.time() - start3))

    start4 = time.time()
    shell_sort(deepcopy(arr))
    print("希尔排序耗时:" + str(time.time() - start4))

    start5 = time.time()
    merge_sort(deepcopy(arr))
    print("归并排序耗时:" + str(time.time() - start5))

    start6 = time.time()
    quick_sort(deepcopy(arr))
    print("快速排序耗时:" + str(time.time()-start6))

2.基本有序数据排序

数据集生成的基本思路:先生成一个有序数列,然后将少量数据插入有序数列中,这里取0.1*n个乱序插入到0.9*n个有序数列中。

if __name__ == '__main__':
    # 生成n个0-10万的基本有序的整型数据
    n = 10  # n in [10, 100, 1000, 10000, 100000]
    n1 = int(n * 0.9)
    n2 = n - n1
    arr = [i for i in range(n1)]
    for i in range(n1, n):
        arr.insert(randint(0, n1 - 1), i)

    start1 = time.time()
    bubble_sort(deepcopy(arr))
    print("冒泡排序耗时:" + str(time.time() - start1))

    start2 = time.time()
    selection_sort(deepcopy(arr))
    print("选择排序耗时:" + str(time.time() - start2))

    start3 = time.time()
    insertion_sort(deepcopy(arr))
    print("插入排序耗时:" + str(time.time() - start3))

    start4 = time.time()
    shell_sort(deepcopy(arr))
    print("希尔排序耗时:" + str(time.time() - start4))

    start5 = time.time()
    merge_sort(deepcopy(arr))
    print("归并排序耗时:" + str(time.time() - start5))

    start6 = time.time()
    quick_sort(deepcopy(arr))
    print("快速排序耗时:" + str(time.time() - start6))

三、实验结果

时间单位是秒,多次测试结果基本差不多,这里猪哥随机选取依次测试结果,全场敷冰进行,请勿模仿

1.随机数排序结果

### n=10 冒泡排序耗时:2.4080276489257812e-05 选择排序耗时:1.9311904907226562e-05 插入排序耗时:1.5020370483398438e-05 希尔排序耗时:1.5974044799804688e-05 归并排序耗时:2.8848648071289062e-05 快速排序耗时:1.9073486328125e-05 ### n=100 冒泡排序耗时:0.000782012939453125 选择排序耗时:0.0004570484161376953 插入排序耗时:0.00039076805114746094 希尔排序耗时:0.00018095970153808594 归并排序耗时:0.0003409385681152344 快速排序耗时:0.00017905235290527344 ### n=1000 冒泡排序耗时:0.08327889442443848 选择排序耗时:0.03776884078979492 插入排序耗时:0.04986977577209473 希尔排序耗时:0.0034036636352539062 归并排序耗时:0.005920886993408203 快速排序耗时:0.0021750926971435547 ### n=10000 冒泡排序耗时:8.781844854354858 选择排序耗时:3.438148021697998 插入排序耗时:4.186453819274902 希尔排序耗时:0.05663800239562988 归并排序耗时:0.06386470794677734 快速排序耗时:0.02335190773010254 ### n=100000 冒泡排序耗时:900.5480690002441 选择排序耗时:879.1669909954071 插入排序耗时:428.66180515289307 希尔排序耗时:0.967015266418457 归并排序耗时:1.4872560501098633 快速排序耗时:0.3050980567932129 ### n=1000000 再经过几小时等待后,我仿佛闻到一股烧焦的味道,真香~

399308daebfecb81c186081fb0ec3f91.png

2.基本有序数据排序结果

### n=10 冒泡排序耗时:2.288818359375e-05 选择排序耗时:1.9788742065429688e-05 插入排序耗时:1.3113021850585938e-05 希尔排序耗时:1.5974044799804688e-05 归并排序耗时:2.9087066650390625e-05 快速排序耗时:1.811981201171875e-05 ### n=100 冒泡排序耗时:0.0004851818084716797 选择排序耗时:0.0004131793975830078 插入排序耗时:0.00013065338134765625 希尔排序耗时:0.00015997886657714844 归并排序耗时:0.00032019615173339844 快速排序耗时:0.00015974044799804688 ### n=1000 冒泡排序耗时:0.05040717124938965 选择排序耗时:0.03394508361816406 插入排序耗时:0.009570121765136719 希尔排序耗时:0.0029370784759521484 归并排序耗时:0.005821943283081055 快速排序耗时:0.0022530555725097656 ### n=10000 冒泡排序耗时:5.24026083946228 选择排序耗时:3.340329885482788 插入排序耗时:0.8101489543914795 希尔排序耗时:0.04622912406921387 归并排序耗时:0.05988883972167969 快速排序耗时:0.023930788040161133 ### n=100000 无

四、实验总结

1.冒泡排序几乎是最差的排序

我们从两种数据结果看,冒泡几乎都是最慢的

2.随机数排序时,当数据集非常少时,插入类排序 要比 比较类排序 快

我们看到在随机数排序结果中,只有当n=10时,快排反而比较慢,而插入和希尔排序相对较快,这是因为插入排序和希尔排序都属于插入类型的排序,而快排和冒泡属于交换类排序,数据量少时交换所消耗的资源占比大。

2c0f4c1b97598cde82a9b37a9b389d6e.png

3.基本有序数据排序时,在数据量较少的情况下,插入排序胜过其他排序

在基本有序数据排序结果中,当n=10和n=100中都是插入排序消耗时间更短,因为数据基本有序,所以需要插入的次数比较少,尽管插入排序需要一个一个比较,但因为数据量不大,所以比较所消耗的资源占比不会太大。

4.不管数据是随机还是基本有序,数据量越大,快排的优势越明显

快排果然还是名副其实的快,我们看到当数据集达到十万级别时,冒泡排序已经用时800多秒,而快排只用了0.3秒,相信随着数据量的增大,它们之间的差距也会越来越大。

5.快排优化方案成立

之前我们讲过快排优化方案:对于大数据集排序先使用快排,使数据集达到基本有序,然后当分区达到一定小的时候使用插入排序,因为插入排序对少量的基本有序数据集性能优于快排!

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值