1987_11变分法与最优控制_10654423
[General Information]
书名=1987.11变分法与最优控制
作者=孙振绮
页数=283
SS号
出版日期=1987年11月第1版
封面页
书名页
版权页
前言页
目录页
第一篇 变分法
绪论
第一章 最简单泛函的极值
1. 绝对极值与相对极值
2. 最简单泛函的变分 极值必要条件
3. 欧拉方程
4. 欧拉方程的积分法
5. 最简单泛函的二次变分 勒让德条件
6. 在一点处的变分 欧拉方程的不变性
习题一
第二章 最简单问题的推广
1. 空间曲线泛函的极值问题
2. 欧拉方程组
3. 空间曲线泛函的二次变分及勒让德条件
4. 依赖于高阶导函数的泛函的变分问题
5. 依赖于多元函数的变分问题
6. 依赖于多元函数的高阶导数的泛函的变分问题
7. 空间曲线泛函在一点处的变分
8. 哈密顿原理及其应用
习题二
第三章 泛函极值的充分条件
1. 极值曲线场
2. 共轭点 雅可比条件
3. Hilbert 不变积分与E函数 强极值的充分条件
4. 弱极值的充分条件
习题三
第四章 可动边界的变分问题
1. 可动边界的最简问题
2. 空间曲线泛函的可变端点问题
3. 依赖于高阶导数泛函的可变端点的变分问题
4. 有尖点的极值曲线
5. 单向变分
6. 简单的混合型泛函的极值问题
习题四
第五章 条件极值的变分问题
1. 等周问题
2. 可变端点的等周问题
3. 条件极值
习题五
第六章 参变数形式的变分问题
1. 曲线的参数形式 齐次条件
2. 可变端点的变分问题
3. 参数形式的等周问题
第七章 变分问题中的直接方法
1. 欧拉有限差分法
2. 里兹法
3. 康脱洛维奇法
习题六
第八章 数学物理方程中的变分方法
1. 算子方程的变分原理
2. 几类重要类型的数学物理方程的变分原理
3. 里兹方法
4. 里兹法在计算微分方程特征值方面的应用
5. 伽辽金法及其应用
习题七
第二篇 最优控制
绪论
第一章 庞特里雅金最大值原理
1. 变分法用于最优控制问题
2. 自由端点问题的最大值原理
3. t1可动时的自由端点问题
4. 终端状态带有约束的最大值原理
习题一
第二章 最大值原理用于线性控制系统
1. 线性时间最优控制
2. 有限时间LQP问题
3. t1=∞时定常系统的LQP问题
4. 跟踪问题的调节器设计
附录Ⅰ 线性定常系统的可控性可观性及其判别
附录Ⅱ 线性定常系统的(全局)渐近稳定性简述
附录Ⅲ 正定与半正定(非负定)矩阵
习题二
第三章 动态规划(DP)法用于求解最优控制
1. DP法用于离散系统最优控制
2. DP法用于连续系统最优控制