变分法求解最优控制问题推导思路

1. 最优控制问题

1.1 问题定义

根据已建立的被控对象的数学模型,从可供选择的容许控制集U中,寻求一个控制向量 u ( t ) \mathbf{u}(t) u(t),使被控系统在时间域内从初始状态转移到目标集时,性能泛函取极值。
从数学观点来看,最优控制研究的问题是求解一类带有约束的泛函极值问题。

1.2 问题组成及描述

除了目标函数是我们需要求解的,其他都可以认为是约束或者条件。

  1. 系统数学方程(约束条件)
    被控系统的数学模型通常用定义在某时间间隔的状态方程来表示。系统状态 x ∈ R n \mathbf{x} \in \mathbb{R}^{n} xRn, 控制向量 u ∈ R m \mathbf{u} \in \mathbb{R}^{m} uRm,状态方程一般表示为:
    x ˙ ( t ) = f [ x ( t ) , u , t ] , t ∈ [ t 0 , t f ] \dot{\mathbf{x}}(t)=f[\mathbf{x}(t), \mathbf{u}, t], t \in\left[t_{0}, t_{f}\right] x˙(t)=f[x(t),u,t],t[t0,tf]
  2. 边界条件
    控制问题初始时刻 t 0 t_{0} t0和状态 x ( t 0 ) \mathbf{x}\left(t_{0}\right) x(t0)一般是固定的。可以表示为 x ( t 0 ) = x 0 \mathbf{x}(t_{0})=\mathbf{x}_{0} x(t0)=x0而末端时刻 t f t_{f} tf和状态 x ( t f ) \mathbf{x}\left(t_{f}\right) x(tf)可能是固定、自由和受约束的,统一表示为目标集。固定时其维度为 r = 1 r=1 r=1,自由时维度为 r = n r=n r=n,受约束时维度 r r r小于 n n n
    ψ [ x ( t f ) , t f ] = 0 \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]=0 ψ[x(tf),tf]=0
    其中 ψ ∈ R r \mathbf{\psi} \in \mathbb{R}^{r} ψRr
  3. 容许控制
    控制被限制在控制域内,表示为 u ( t ) ∈ Ω \mathbf{u}(t) \in \Omega u(t)Ω
  4. 性能指标
    性能指标又称为目标函数或目标泛函,由任务目的决定。可分为积分型和末值型。积分型针对某函数变量在整个控制过程中值的积分进行优化,如最小转移时间;末值型则针对某函数变量到达目标状态时的值进行优化,如导弹脱靶量。
    可以统一表示为
    J = φ [ x ( t f ) , t f ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t . J=\varphi\left[\mathbf{x}(t_{f}), t_{f}\right]+\int_{t_{0}}^{t_{f}} L[\mathbf{x}(t), \mathbf{u}(t), t] d t . J=φ[x(tf),tf]+t0tfL[x(t),u(t),t]dt.

2. 控制问题与变分法

变分法只能求解控制不受约束的问题。

2.1目标函数是泛函

在最优控制问题中,对于每一个以时间为自变量的状态函数 x ( t ) \mathbf{x}(t) x(t),目标函数 J J J都有一个值与之对应,构成了函数到值的映射。即目标函数是函数的函数,而不是自变量的函数。

2.2 泛函变分

泛函的变分相当于函数的微分,指的是泛函增量的线性主部。在微分中 d y = f ′ ( x ) Δ x d y=f^{\prime}(x) \Delta x dy=f(x)Δx,同理对于以函数 x ( t ) \mathbf{x}(t) x(t)为自变量的积分型的目标函数 J ( x ) = ∫ t 0 t 0 L ( x , x ˙ , t ) d t J(x)=\int_{t_{0}}^{t_{0}} L(x, \dot{x}, t) d t J(x)=t0t0L(x,x˙,t)dt
δ J = ∫ t 0 t f ( ∂ L ∂ x δ x + ∂ L ∂ x ˙ δ x ˙ ) d t \delta J=\int_{t_{0}}^{t_{f}}\left(\frac{\partial L}{\partial x} \delta x+\frac{\partial L}{\partial \dot{x}} \delta \dot{x}\right) d t δJ=t0tf(xLδx+x˙Lδx˙)dt

2.3 泛函极值定理

当目标函数的变分等于零时,意味着状态函数 x ( t ) x(t) x(t)发生微小改变时目标函数值不变,即取到极值。即可微泛函 J [ x ( t ) ] J[\mathbf{x}(t)] J[x(t)] x = x ∗ ( t ) x=x^{*}(t) x=x(t) 上达到极值, 则 J [ x ( t ) ] J[\mathbf{x}(t)] J[x(t)] x = x ∗ ( t ) x=x^{*}(t) x=x(t) 上的变分等于零,
δ J = 0 \delta J=0 δJ=0

3. 变分法求解

3.1 广义泛函

对于没有约束条件的最优控制问题,可以直接写出变分使其等于0来求解。然而对于有等式约束(例如状态方程)的情况,可以通过将引入拉格朗日乘子向量来构造广义泛函。

积分型目标函数

一个有等式约束的积分型问题为
min ⁡ x J ( x ) = ∫ t 0 t f L ( x , x ˙ , t ) d t  s.  t . f ( x , x ˙ , t ) − x ˙ = 0 \begin{gathered} \min _{\mathbf{x}} J(\mathbf{x})=\int_{t_{0}}^{t_{f}} L(\mathbf{x}, \mathbf{\dot{x}}, t) d t \\ \text { s. } t . \quad f(\mathbf{x}, \mathbf{\dot{x}}, t) - \mathbf{\dot{x}}=0 \end{gathered} xminJ(x)=t0tfL(x,x˙,t)dt s. t.f(x,x˙,t)x˙=0
s . t . s. t. s.t.指满足该条件。
引入乘子向量,也叫协态变量构造拉格朗日函数
L a ( x , x ˙ , λ , t ) = L ( x , x ˙ , t ) + λ ⊤ ( t ) [ f ( x , x ˙ , t ) − x ˙ ] . L_{a}(\mathbf{x}, \dot{\mathbf{x}}, \lambda, t)=L(\mathbf{x}, \dot{\mathbf{x}}, t)+\mathbf{\lambda}^{\top}(t)[f(\mathbf{x}, \dot{\mathbf{x}}, t)-\dot{\mathbf{x}}]. La(x,x˙,λ,t)=L(x,x˙,t)+λ(t)[f(x,x˙,t)x˙].
为了便于求解,取拉格朗日函数的一部分定义哈密尔顿函数
H ( x , x ˙ , λ , t ) = L ( x , x ˙ , t ) + λ ⊤ ( t ) f ( x , x ˙ , t ) . H(\mathbf{x}, \dot{\mathbf{x}}, \lambda, t)=L(\mathbf{x}, \dot{\mathbf{x}}, t)+\mathbf{\lambda}^{\top}(t)f(\mathbf{x}, \dot{\mathbf{x}}, t). H(x,x˙,λ,t)=L(x,x˙,t)+λ(t)f(x,x˙,t).
此时,得到广义泛函 J a ( x ) = ∫ t 0 t f L a ( x , x ˙ , t ) d t , J_{a}(\mathbf{x})=\int_{t_{0}}^{t_{f}} L_{a}(\mathbf{x}, \mathbf{\dot{x}}, t) d t, Ja(x)=t0tfLa(x,x˙,t)dt由于 λ ⊤ ( t ) [ f ( x , x ˙ , t ) − x ˙ ] = 0 \lambda^{\top}(t)[f(\mathbf{x}, \dot{\mathbf{x}}, t)-\dot{\mathbf{x}}]=0 λ(t)[f(x,x˙,t)x˙]=0,求 J J J极值等价于求 J a J_{a} Ja极值。

末值型目标函数

一个末端时刻和状态满足目标集的末值型问题为
J = φ [ x ( t f ) , t f ]  s.  t . ψ [ x ( t f ) , t f ] = 0 \begin{gathered}J=\varphi\left[\mathbf{x}(t_{f}), t_{f}\right] \\ \text { s. } t . \quad \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]=0 \end{gathered} J=φ[x(tf),tf] s. t.ψ[x(tf),tf]=0
同理,由于 ψ [ x ( t f ) , t f ] = 0 \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]=0 ψ[x(tf),tf]=0,此处引入拉格朗日乘子 γ \mathbf{\gamma} γ,得到广义泛函 J = φ [ x ( t f ) , t f ] + γ ⊤ ( t ) ψ [ x ( t f ) , t f ] = 0 J=\varphi\left[\mathbf{x}(t_{f}), t_{f}\right] +\mathbf{\gamma}^{\top}(t) \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]=0 J=φ[x(tf),tf]+γ(t)ψ[x(tf),tf]=0

3.2 变分的表示

末端时刻固定

考虑最一般的形式,已知初始末端时间和初始状态,末端状态自由(边界条件),有等式约束(系统数学模型)求解最优控制(性能指标)问题:
J = φ [ x ( t f ) ] + ∫ t 0 t f L [ x ( t ) , u ( t ) , t ] d t  s.  t . f ( x , x ˙ , t ) − x ˙ = 0 , x ( t 0 ) = x 0 ψ [ x ( t f ) ] = 0 \begin{gathered}J=\varphi\left[\mathbf{x}(t_{f})\right]+\int_{t_{0}}^{t_{f}} L[\mathbf{x}(t), \mathbf{u}(t), t] d t \\ \text { s. } t . \quad f(\mathbf{x}, \mathbf{\dot{x}}, t) - \mathbf{\dot{x}}=0,\quad \mathbf{x}(t_{0})=\mathbf{x}_{0}\\ \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right)\right]=0 \end{gathered} J=φ[x(tf)]+t0tfL[x(t),u(t),t]dt s. t.f(x,x˙,t)x˙=0,x(t0)=x0ψ[x(tf)]=0
引入两个拉格朗日乘子得到广义泛函
J a = φ [ x ( t f ) ] + γ ⊤ ( t ) ψ [ x ( t f ) ] + ∫ t 0 t f [ H ( x , x ˙ , λ , t ) − λ ⊤ ( t ) x ˙ ] d t J_{a}=\varphi\left[\mathbf{x}(t_{f})\right] +\mathbf{\gamma}^{\top}(t) \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right)\right]+\int_{t_{0}}^{t_{f}}[H(\mathbf{x}, \dot{\mathbf{x}}, \lambda, t)-\mathbf{\lambda}^{\top}(t)\dot{\mathbf{x}}]dt Ja=φ[x(tf)]+γ(t)ψ[x(tf)]+t0tf[H(x,x˙,λ,t)λ(t)x˙]dt
最后一个积分项分部积分表示为 − ∫ t 0 t f λ ⊤ ( t ) x ˙ ( t ) d t = − λ ⊤ ( t ) x ( t ) ∣ t 0 t f + ∫ t 0 t f λ ˙ ⊤ ( t ) x ( t ) d t -\int_{t_{0}}^{t_{f}} \lambda^{\top}(t) \dot{\mathbf{x}}(t) d t=-\left.\lambda^{\top}(t) \mathbf{x}(t)\right|_{t_{0}} ^{t_{f}}+\int_{t_{0}}^{t_{f}} \dot{\lambda}^{\top}(t) \mathbf{x}(t) d t t0tfλ(t)x˙(t)dt=λ(t)x(t)t0tf+t0tfλ˙(t)x(t)dt,带入得到
J a = φ [ x ( t f ) ] + γ ⊤ ( t ) ψ [ x ( t f ) ] + ∫ t 0 t f [ H ( x , x ˙ , λ , t ) + λ ˙ ⊤ ( t ) x ( t ) ] d t − λ ⊤ ( t f ) x ( t f ) + λ ⊤ ( t 0 ) x ( t 0 ) J_{a}=\varphi\left[\mathbf{x}(t_{f})\right] +\mathbf{\gamma}^{\top}(t) \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right)\right]+\int_{t_{0}}^{t_{f}}[H(\mathbf{x}, \dot{\mathbf{x}}, \lambda, t)+\dot{\lambda}^{\top}(t) \mathbf{x}(t)]dt-\lambda^{\top}(t_{f}) \mathbf{x}(t_{f})+\lambda^{\top}(t_{0}) \mathbf{x}(t_{0}) Ja=φ[x(tf)]+γ(t)ψ[x(tf)]+t0tf[H(x,x˙,λ,t)+λ˙(t)x(t)]dtλ(tf)x(tf)+λ(t0)x(t0)
对除了 t f , γ , λ , t t_{f},\gamma,\lambda,t tf,γ,λ,t以外的变量写目标函数的变分,且初始时刻固定其状态变分为零即 δ x ( t 0 ) = 0 \delta \mathrm{x}\left(\mathrm{t}_{0}\right)=0 δx(t0)=0,得到
δ J a = ( ∂ φ ∂ x ( t f ) ) T δ x ( t f ) + ∫ t 0 t f [ ( ∂ H ∂ x + λ ˙ ) T δ x + ( ∂ H ∂ u ) T δ u ] d t + γ T ( ∂ ψ T ∂ x ( t f ) ) T δ x ( t f ) − λ T ( t f ) δ x ( t f ) \begin{aligned} \delta \mathrm{J}_{\mathrm{a}}=&\left(\frac{\partial \varphi}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)}\right)^{\mathrm{T}} \delta \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right) \\ &+\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}\left[\left(\frac{\partial \mathrm{H}}{\partial \mathrm{x}}+\dot{\lambda}\right)^{\mathrm{T}} \delta \mathrm{x}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{u}}\right)^{\mathrm{T}} \delta \mathrm{u}\right] \mathrm{dt}\\ &+\gamma^{\mathrm{T}}\left(\frac{\partial \psi^{\mathrm{T}}}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)}\right)^{\mathrm{T}} \delta \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)-\lambda^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \delta \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right) \end{aligned} δJa=(x(tf)φ)Tδx(tf)+t0tf[(xH+λ˙)Tδx+(uH)Tδu]dt+γT(x(tf)ψT)Tδx(tf)λT(tf)δx(tf)
要使变分为0,需要积分项为0,一式和状态方程统称为正则方程,二式称为极小值条件。
{ λ ˙ ( t ) = − ∂ H ∂ x ∂ H ∂ u = 0 \left\{\begin{array}{l} \dot{\lambda}(\mathrm{t})=-\frac{\partial \mathrm{H}}{\partial \mathrm{x}} \\ \frac{\partial \mathrm{H}}{\partial \mathrm{u}}=0 \end{array}\right. {λ˙(t)=xHuH=0
其他 δ x ( t f ) \delta x\left(t_{f}\right) δx(tf)项称为横截条件,和初态及目标集统称为边界条件。
λ ( t f ) = ∂ φ ∂ x ( t f ) + ∂ ψ T ∂ x ( t f ) γ . \lambda\left(\mathrm{t}_{\mathrm{f}}\right)=\frac{\partial \varphi}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)}+\frac{\partial \psi^{\mathrm{T}}}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)} \gamma. λ(tf)=x(tf)φ+x(tf)ψTγ.
显然, 在上述结果中, 若 x ( t f ) x\left(t_{f}\right) x(tf) 自由, 则结果中不出现 Ψ [ x ( t f ) ] \Psi\left[\mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)\right] Ψ[x(tf)] 项; 若 x ( t f ) \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right) x(tf) 固定, 则 因 δ x ( t f ) = 0 \delta x\left(t_{f}\right)=0 δx(tf)=0, 横截条件不出现。

末端时刻自由

末端时刻自由时,末端由 ( x f , t f ) → ( x f + δ x f , t f + δ t f ) \left(\mathrm{x}_{\mathrm{f}}, \mathrm{t}_{\mathrm{f}}\right) \rightarrow\left(\mathrm{x}_{\mathrm{f}}+\delta \mathrm{x}_{\mathrm{f}}, \mathrm{t}_{\mathrm{f}}+\delta \mathrm{t}_{\mathrm{f}}\right) (xf,tf)(xf+δxf,tf+δtf),如下图所示
在这里插入图片描述

δ x f \delta \mathrm{x}_{\mathrm{f}} δxf是实际末端状态变分, δ x ( t f ) \delta \mathrm{x}({\mathrm{t_{f}}}) δx(tf)是末端时刻固定时末端状态变分, δ t f \delta t_{f} δtf是末端时刻变分,由图可近似得出三者近似关系
δ x f = δ x t f + x ˙ ( t f ) δ t f \delta \mathrm{x}_{\mathrm{f}}=\delta \mathrm{x}\mathrm{t_{f}}+\dot{\mathrm{x}}(t_{f})\delta t_{f} δxf=δxtf+x˙(tf)δtf
考虑最一般的形式,已知初始时间和初始状态,末端时间和状态自由(边界条件),有等式约束(系统数学模型)求解最优控制(性能指标)问题:
J = φ [ x ( t f ) , t f ] + ∫ t 0 t 0 L [ x ( t ) , u ( t ) , t ] d t  s.  t . f ( x , x ˙ , t ) − x ˙ = 0 , x ( t 0 ) = x 0 ψ [ x ( t f ) , t f ] = 0 \begin{gathered}J=\varphi\left[\mathbf{x}(t_{f}), t_{f}\right]+\int_{t_{0}}^{t_{0}} L[\mathbf{x}(t), \mathbf{u}(t), t] d t \\ \text { s. } t . \quad f(\mathbf{x}, \mathbf{\dot{x}}, t) - \mathbf{\dot{x}}=0,\quad \mathbf{x}(t_{0})=\mathbf{x}_{0}\\ \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]=0 \end{gathered} J=φ[x(tf),tf]+t0t0L[x(t),u(t),t]dt s. t.f(x,x˙,t)x˙=0,x(t0)=x0ψ[x(tf),tf]=0
引入两个拉格朗日乘子得到广义泛函
J a = φ [ x ( t f ) , t f ] + γ ⊤ ( t ) ψ [ x ( t f ) , t f ] + ∫ t 0 t f [ H ( x , x ˙ , λ , t ) − λ ⊤ ( t ) x ˙ ] d t J_{a}=\varphi\left[\mathbf{x}(t_{f}), t_{f}\right] +\mathbf{\gamma}^{\top}(t) \mathbf{\psi}\left[\mathbf{x}\left(t_{f}\right), t_{f}\right]+\int_{t_{0}}^{t_{f}}[H(\mathbf{x}, \dot{\mathbf{x}}, \lambda, t)-\mathbf{\lambda}^{\top}(t)\dot{\mathbf{x}}]dt Ja=φ[x(tf),tf]+γ(t)ψ[x(tf),tf]+t0tf[H(x,x˙,λ,t)λ(t)x˙]dt
与末端时间固定不同的是,此处 t f t_{f} tf是变量,需要增加三处关于对除了 t f t_{f} tf的变分,它们是 ∂ φ ∂ t f δ t f \frac{\partial \varphi}{\partial \mathrm{t}_{\mathrm{f}}} \delta \mathrm{t}_{\mathrm{f}} tfφδtf γ T ∂ Ψ ∂ t f δ t f \gamma^{\mathrm{T}}\frac{\partial \Psi}{\partial \mathrm{t}_{\mathrm{f}}} \delta \mathrm{t}_{\mathrm{f}} γTtfΨδtf以及 ( H − λ T x ˙ ) t f δ t f \left(\mathrm{H}-\lambda^{\mathrm{T}} \dot{\mathrm{x}}\right)_{\mathrm{t}_{\mathrm{f}}} \delta \mathrm{t}_{\mathrm{f}} (HλTx˙)tfδtf。此时变分为
δ J a = ( ∂ φ ∂ x ( t f ) ) T δ x f + ∂ φ ∂ t f δ t f + γ T { ( ∂ Ψ ∂ x ( t f ) ) T δ x f + ∂ Ψ ∂ t f δ t f } + ( H − λ T x ˙ ) t f δ t f + ∫ t 0 t f [ ( ∂ H ∂ X + λ ˙ ) T δ x + ( ∂ H ∂ u ) T δ u ] d t − λ T ( t f ) δ x ( t f ) \begin{aligned} &\delta \mathrm{J}_{a}=\left(\frac{\partial \varphi}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)}\right)^{\mathrm{T}} \delta \mathrm{x}_{\mathrm{f}}+\frac{\partial \varphi}{\partial \mathrm{t}_{\mathrm{f}}} \delta \mathrm{t}_{\mathrm{f}} \\ &+\gamma^{\mathrm{T}}\left\{\left(\frac{\partial \Psi}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)}\right)^{\mathrm{T}} \delta \mathrm{x}_{\mathrm{f}}+\frac{\partial \Psi}{\partial \mathrm{t}_{\mathrm{f}}} \delta \mathrm{t}_{\mathrm{f}}\right\} \\ &+\left(\mathrm{H}-\lambda^{\mathrm{T}} \dot{\mathrm{x}}\right)_{\mathrm{t}_{\mathrm{f}}} \delta \mathrm{t}_{\mathrm{f}} \\ &+\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}\left[\left(\frac{\partial \mathrm{H}}{\partial \mathrm{X}}+\dot{\lambda}\right)^{\mathrm{T}} \delta \mathrm{x}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{u}}\right)^{\mathrm{T}} \delta \mathrm{u}\right] \mathrm{dt} \\ &-\lambda^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \delta \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right) \end{aligned} δJa=(x(tf)φ)Tδxf+tfφδtf+γT{(x(tf)Ψ)Tδxf+tfΨδtf}+(HλTx˙)tfδtf+t0tf[(XH+λ˙)Tδx+(uH)Tδu]dtλT(tf)δx(tf)
根据变分末端的近似关系可得 − λ T ( t f ) δ x ( t f ) = − λ T ( t f ) δ x f + λ T ( t f ) x ˙ ( t f ) δ t f -\lambda^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \delta \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)=-\lambda^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \delta \mathrm{x}_{\mathrm{f}}+\lambda^{\mathrm{T}}\left(\mathrm{t}_{\mathrm{f}}\right) \dot{\mathrm{x}}\left(\mathrm{t}_{\mathrm{f}}\right) \delta \mathrm{t}_{\mathrm{f}} λT(tf)δx(tf)=λT(tf)δxf+λT(tf)x˙(tf)δtf
整理得
δ J a = [ ∂ φ ∂ t f + γ T ∂ Ψ ∂ t f + H ( t f ) ] δ t f + [ ∂ φ ∂ x ( t f ) + ∂ Ψ ∂ x ( t f ) γ − λ ( t f ) ] T δ x f + ∫ t 0 t f [ ( ∂ H ∂ X + λ ) T δ x + ( ∂ H ∂ u ) T δ u ] d t \begin{aligned} \delta \mathrm{J}_{\mathrm{a}} &=\left[\frac{\partial \varphi}{\partial \mathrm{t}_{\mathrm{f}}}+\gamma^{\mathrm{T}} \frac{\partial \Psi}{\partial \mathrm{t}_{\mathrm{f}}}+\mathrm{H}\left(\mathrm{t}_{\mathrm{f}}\right)\right] \delta \mathrm{t}_{\mathrm{f}} \\ &+\left[\frac{\partial \varphi}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)}+\frac{\partial \Psi}{\partial \mathrm{x}\left(\mathrm{t}_{\mathrm{f}}\right)} \gamma-\lambda\left(\mathrm{t}_{\mathrm{f}}\right)\right]^{\mathrm{T}} \delta \mathrm{x}_{\mathrm{f}} \\ &+\int_{\mathrm{t}_{0}}^{\mathrm{t}_{\mathrm{f}}}\left[\left(\frac{\partial \mathrm{H}}{\partial \mathrm{X}}+\lambda\right)^{\mathrm{T}} \delta \mathrm{x}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{u}}\right)^{\mathrm{T}} \delta \mathrm{u}\right] \mathrm{dt} \end{aligned} δJa=[tfφ+γTtfΨ+H(tf)]δtf+[x(tf)φ+x(tf)Ψγλ(tf)]Tδxf+t0tf[(XH+λ)Tδx+(uH)Tδu]dt
同理,使各项为0可得极值。

总结

《最优控制理论与系统》201620015000000000009.pdf

  • 4
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Zeror_

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值