流体力学 吴望一_流体力学-预备知识

在下一个卑微物竞党兼数竞党,目前高一,坐标四川成都,最近在学习流体力学,为了检验自己的学习成果和之后能够好好复习,所以决定写下这一系列的文章,第一次就从预备知识入手,首先默认大家都会简单的求导和积分(如果要从头说起的话就太多了,因为我懒...

开始之前还是再次申明一下,由于在下水平有限,如有错误,请在评论区友好留言,不喜勿喷(狗头

好了,那咱们开始吧!!!

这篇文章主要是讲在流体力学当中用到的一些数学知识,在流体力学中用不到的不会提及。

Part 1: 矢量分析

说到矢量分析,我们首先要介绍

(哈密顿算符),这个东西,既是一个矢量又是一个算符,其中
=
,若对于一个函数f进行一个算符运算,则可以得到函数f的
梯度,其中
, 注意到这里的f是一个标量场,
是一个矢量场。

但光给一个这个定义确实非常难以理解梯度是个啥,简单来说,

表示的是函数
变化快慢与方向,比如假设
是电势,则
就是电场。

欧克,理解了梯度,又注意到我们刚才讲过这个所谓的哈密顿算符

是一个矢量,既然是矢量,那我们就会想一个问题,如果再找一个矢量与之点乘或者叉乘会咋样呢?

若找一个矢量场

点乘,这个量我们称为矢量场
散度,记作

如果你是第一次看到这个符号,一定会被这个可怕的符号吓到,没有关系,之后还有更恐怖的,比如

,这个,就是散度的表达式,但还是一样的问题,太抽象了啊。

生动的来讲,散度表示的是矢量场上某个点上变多的程度,负数则是变少的程度。

若找一个矢量场

叉乘,这个量我们称为矢量场
的旋度,记作

其中

,哎,看似很复杂,但实际上跟矢量的叉乘一样的(狗头

按照惯例,生动的来讲,旋度表示矢量场在某个点的旋转程度以及旋转方向(右手螺旋)。

为了更好的理解散度与旋度,接下来,我们会介绍两个非常重要的定理。

Part 2: 两个非常重(e)要(xin)的定理

高斯定理:

首先这是研究一个闭合曲面s在矢量场

中的通量的一个定理,大多会在电磁学中运用,但为了更好的理解这个变态的散度,我们还是讲一讲吧(狗头

很容易得到,通量

(其中,
表示在一个闭合曲面内进行积分)

再考虑,将s里面的区域记为V,又知道

表示某个点上变化了多少,那么它对V的积分就是A在闭合曲面s里面有多少,则与通量
一样,由此,得
,这个就是大名鼎鼎的高斯定理。

stokes定理:

刚才的高斯定理讲的是一个闭合曲面s在矢量场中的通量,此时,我不考虑一个闭合曲面,而是去考虑一个在三维空间中的环L,我们想要去计算其在矢量场中的环通量C。

显然得到,

又考虑到,

表示小面元上的旋转程度,如果考虑很多很多个这样的小面元相加,两个相邻的公共便上的A会抵消,剩下的都是C,那么就可以得到
,这个就是声名远扬的stokes定理。

Part 3: 张量的介绍

,这个是a矢量在三维坐标轴中的展开,但这样写是不是稍微有点麻烦,科学家都是简约主义,所以,他们发明了一个有趣的东西,来简化矢量的书写,名为张量(这个是本人的强制定义,严谨定义还得去看教材(狗头,我们这里只介绍在笛卡尔坐标系下的张量。

克罗内克尔

张量:

,其中
,其实不难理解,如果两个矢量一样,他们点乘就是1,而如果不一样,在笛卡尔坐标系中,必然是垂直的,所以点乘为0。

这里,爱因斯坦出来说了一个约定,称之为爱因斯坦求和约定,当进行求和的时候,如果下标一致,则可以不写求和符号。例如

,其中,i称之为哑指标。

我们来举个关于克罗内克尔张量的栗子,已知

,
,则经过一通爆算,很快速的可以得到

好了,到这里就结束了吧,虽然还有一个恶心的置换符号(列维-奇维塔张量),但码字实在太累了(我太懒,抱歉,所以就留着下一次再来填这个坑吧(逃(狗头

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值