




【总结】方程思想,这也是解析几何的主题思想,几何问题代数化,转化为代数计算. 优点:思路简单清晰易于理解. 缺点:计算量较大.


【总结】此方法优点:计算量大幅度减小,紧扣问题入手,切入点准确. 缺点:相较解法1而言,思维难度有了提升,并非所有学生能够想到.


【
总结】优点:计算量最小,只用了一个投影公式
. 缺点:最不容易想到,不符合
学生思维的习惯.



【解法5】
【
心路历程】在解析几何中,求点到曲线上的点的距离的最值或取值范围,通常设点,套距离公式,转化为函数求最值或取值范围.这个想法nice! 这样,后面还有一个岔道,先让我爽一把(柯西一下),再展示函数求最值吧.柯西的诞生主要还是因为我事先知道了点到直线的距离公式,瞅着目标前进的结果.人无目标,必绕远路.(我们高二上校本第19页第21题我也可以有一个建系柯西法)


【
总结】今晚我所有的耐心都用在了计算【解法5】的【解2】上了!这需要极强的计算能力. 我不得不说,有一种能力叫计算,计算不仅是能力的体现,也是忍耐力的体现. 在解析几何中,真是有很多问题,你一眼看穿,这个方法能做,但真要做下去,的确有望山跑死马的感觉. 为了给我的学生树立好榜样,我强忍着把它算完了. 在化简形变的过程中我还是被惊到了,仔细观察,里面还是有一些技巧的. 算是对我强忍着做这个【解2】的抚慰. 并且我被抚慰到了. 虽然,虽然,虽然,……,但这个【解2】的确属于解析几何中的基本问题之基本方法. 应该还有其它方法,留给我们的学生思考.